Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 144767 by mnjuly1970 last updated on 29/Jun/21

Answered by Rasheed.Sindhi last updated on 29/Jun/21

(x^3 −(2/x^2 ))^m =a_0 +a_1 x+a_2 x^2 +...+a_n x^n   ((a_0 +a_1 +a_2 +...+a_n )/(n+1))=0.2=(1/5)  Let x=1  (−1)^m =a_0 +a_1 +a_2 +...+a_n =((n+1)/5)  m∈O→((n+1)/5)=−1⇒n=−6(rejected)  m∉O  m∈E→ ((n+1)/5)=1⇒n=4  a_0 +a_1 +a_2 +a_3 +a_4 =((4+1)/5)=1  .......  .....

$$\left({x}^{\mathrm{3}} −\frac{\mathrm{2}}{{x}^{\mathrm{2}} }\right)^{{m}} ={a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +...+{a}_{{n}} {x}^{{n}} \\ $$$$\frac{{a}_{\mathrm{0}} +{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +...+{a}_{{n}} }{{n}+\mathrm{1}}=\mathrm{0}.\mathrm{2}=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$${Let}\:{x}=\mathrm{1} \\ $$$$\left(−\mathrm{1}\right)^{{m}} ={a}_{\mathrm{0}} +{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +...+{a}_{{n}} =\frac{{n}+\mathrm{1}}{\mathrm{5}} \\ $$$${m}\in\mathbb{O}\rightarrow\frac{{n}+\mathrm{1}}{\mathrm{5}}=−\mathrm{1}\Rightarrow{n}=−\mathrm{6}\left({rejected}\right) \\ $$$${m}\notin\mathbb{O} \\ $$$${m}\in\mathbb{E}\rightarrow\:\frac{{n}+\mathrm{1}}{\mathrm{5}}=\mathrm{1}\Rightarrow{n}=\mathrm{4} \\ $$$${a}_{\mathrm{0}} +{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} +{a}_{\mathrm{4}} =\frac{\mathrm{4}+\mathrm{1}}{\mathrm{5}}=\mathrm{1} \\ $$$$....... \\ $$$$..... \\ $$

Answered by mr W last updated on 29/Jun/21

(x^3 −(2/x^2 ))^m =a_0 +a_1 x+a_2 x^2 +...+a_n x^n   x=1:  (1−(2/1))^m =a_0 +a_1 +a_2 +...+a_n =((n+1)/5)  (−1)^m =((n+1)/5)  ⇒n=4,m=4  (x^3 −(2/x^2 ))^4 =((16)/x^8 )−((32)/x^3 )+24x^2 −8x^7 +x^(12)   a_2 =24

$$\left({x}^{\mathrm{3}} −\frac{\mathrm{2}}{{x}^{\mathrm{2}} }\right)^{{m}} ={a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +...+{a}_{{n}} {x}^{{n}} \\ $$$${x}=\mathrm{1}: \\ $$$$\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{1}}\right)^{{m}} ={a}_{\mathrm{0}} +{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +...+{a}_{{n}} =\frac{{n}+\mathrm{1}}{\mathrm{5}} \\ $$$$\left(−\mathrm{1}\right)^{{m}} =\frac{{n}+\mathrm{1}}{\mathrm{5}} \\ $$$$\Rightarrow{n}=\mathrm{4},{m}=\mathrm{4} \\ $$$$\left({x}^{\mathrm{3}} −\frac{\mathrm{2}}{{x}^{\mathrm{2}} }\right)^{\mathrm{4}} =\frac{\mathrm{16}}{{x}^{\mathrm{8}} }−\frac{\mathrm{32}}{{x}^{\mathrm{3}} }+\mathrm{24}{x}^{\mathrm{2}} −\mathrm{8}{x}^{\mathrm{7}} +{x}^{\mathrm{12}} \\ $$$${a}_{\mathrm{2}} =\mathrm{24} \\ $$

Commented by Rasheed.Sindhi last updated on 30/Jun/21

N ∣^(•)  ⊂ ∈ Sir!

$$\mathcal{N}\:\overset{\bullet} {\shortmid}\:\subset\:\in\:\boldsymbol{\mathrm{Sir}}! \\ $$

Commented by mnjuly1970 last updated on 30/Jun/21

  thx mr W...

$$\:\:{thx}\:{mr}\:{W}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com