Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 144532 by EDWIN88 last updated on 26/Jun/21

A rectangular box,open at the  top is to have a volume of 32 cube feet  What must be the dimensions  so that the total surface is a minimum?

$$\mathrm{A}\:\mathrm{rectangular}\:\mathrm{box},\mathrm{open}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{top}\:\mathrm{is}\:\mathrm{to}\:\mathrm{have}\:\mathrm{a}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{32}\:\mathrm{cube}\:\mathrm{feet} \\ $$$$\mathrm{What}\:\mathrm{must}\:\mathrm{be}\:\mathrm{the}\:\mathrm{dimensions} \\ $$$$\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{total}\:\mathrm{surface}\:\mathrm{is}\:\mathrm{a}\:\mathrm{minimum}? \\ $$

Answered by liberty last updated on 26/Jun/21

volume of box = V=xyz = 32   and z = ((32)/(xy))  surface area of box =S=xy+2yz+2xz    { (((∂S/∂x)=y−((64)/x^2 )=0 when x^2 y=64)),(((∂S/∂y)=x−((64)/y^2 )=0 when xy^2 =64)) :}  so we get y=x and x^3 =64 or   x=y=4 and z=2  for x=y=4 ,Δ=S_(xx) S_(yy) −S_(xy) ^2   Δ = (((128)/x^3 ))(((128)/y^3 ))−1>0   and S_(xx) = ((128)/x^3 )>0 hence it follows  that the dimensions 4 feet × 4 feet ×2 feet  give the minimum surface

$$\mathrm{volume}\:\mathrm{of}\:\mathrm{box}\:=\:\mathrm{V}=\mathrm{xyz}\:=\:\mathrm{32} \\ $$$$\:\mathrm{and}\:\mathrm{z}\:=\:\frac{\mathrm{32}}{\mathrm{xy}} \\ $$$$\mathrm{surface}\:\mathrm{area}\:\mathrm{of}\:\mathrm{box}\:=\mathrm{S}=\mathrm{xy}+\mathrm{2yz}+\mathrm{2xz} \\ $$$$\:\begin{cases}{\frac{\partial\mathrm{S}}{\partial\mathrm{x}}=\mathrm{y}−\frac{\mathrm{64}}{\mathrm{x}^{\mathrm{2}} }=\mathrm{0}\:\mathrm{when}\:\mathrm{x}^{\mathrm{2}} \mathrm{y}=\mathrm{64}}\\{\frac{\partial\mathrm{S}}{\partial\mathrm{y}}=\mathrm{x}−\frac{\mathrm{64}}{\mathrm{y}^{\mathrm{2}} }=\mathrm{0}\:\mathrm{when}\:\mathrm{xy}^{\mathrm{2}} =\mathrm{64}}\end{cases} \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{get}\:\mathrm{y}=\mathrm{x}\:\mathrm{and}\:\mathrm{x}^{\mathrm{3}} =\mathrm{64}\:\mathrm{or}\: \\ $$$$\mathrm{x}=\mathrm{y}=\mathrm{4}\:\mathrm{and}\:\mathrm{z}=\mathrm{2} \\ $$$$\mathrm{for}\:\mathrm{x}=\mathrm{y}=\mathrm{4}\:,\Delta=\mathrm{S}_{\mathrm{xx}} \mathrm{S}_{\mathrm{yy}} −\mathrm{S}_{\mathrm{xy}} ^{\mathrm{2}} \\ $$$$\Delta\:=\:\left(\frac{\mathrm{128}}{\mathrm{x}^{\mathrm{3}} }\right)\left(\frac{\mathrm{128}}{\mathrm{y}^{\mathrm{3}} }\right)−\mathrm{1}>\mathrm{0}\: \\ $$$$\mathrm{and}\:\mathrm{S}_{\mathrm{xx}} =\:\frac{\mathrm{128}}{\mathrm{x}^{\mathrm{3}} }>\mathrm{0}\:\mathrm{hence}\:\mathrm{it}\:\mathrm{follows} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{dimensions}\:\mathrm{4}\:\mathrm{feet}\:×\:\mathrm{4}\:\mathrm{feet}\:×\mathrm{2}\:\mathrm{feet} \\ $$$$\mathrm{give}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{surface} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com