Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 143698 by Dwaipayan Shikari last updated on 17/Jun/21

 My first Contribution to this forum.   One year later   Q 98831

$$\:{My}\:{first}\:{Contribution}\:{to}\:{this}\:{forum}.\: \\ $$$${One}\:{year}\:{later}\: \\ $$$${Q}\:\mathrm{98831} \\ $$

Commented by Dwaipayan Shikari last updated on 17/Jun/21

Mad Question on that same day. Mr.MJS said that it  Consists Hypergeometric function .I didn′t know  About Hypergeometric functions  Q98951

$${Mad}\:{Question}\:{on}\:{that}\:{same}\:{day}.\:{Mr}.{MJS}\:{said}\:{that}\:{it} \\ $$$${Consists}\:{Hypergeometric}\:{function}\:.{I}\:{didn}'{t}\:{know} \\ $$$${About}\:{Hypergeometric}\:{functions} \\ $$$${Q}\mathrm{98951} \\ $$

Commented by Dwaipayan Shikari last updated on 17/Jun/21

Another Mad Question!  Q 98929

$${Another}\:{Mad}\:{Question}! \\ $$$${Q}\:\mathrm{98929} \\ $$

Commented by Dwaipayan Shikari last updated on 17/Jun/21

∫tan^(1/5) (x) cot(x)sec(x)dx  =∫((sin^(−4/5) x)/(cos^(1/5) x)) dx           sinx=t  =∫t^(−4/5) (1−t^2 )^(−3/5) dt     =Σ_(n=0) ^∞ ((((3/5))_n )/(n!))∫t^(−4/5) t^(2n) dt=Σ_(n=0) ^∞ ((((3/5))_n )/(n!)).(1/(2n+(1/5)))t^(2n+(4/5)) +C  =(t^(1/5) /2)Σ_(n=0) ^∞ ((((3/5))_n )/(n!(n+(1/(10)))))t^(2n) +C  =(t^(1/5) /2)Σ_(n=0) ^∞ ((((3/5))_n Γ(n+(1/(10))))/(n!Γ(n+((11)/(10)))))t^(2n) =5(t)^(1/5) Σ_(n=0) ^∞ ((((3/5))_n ((1/(10)))_n )/(n!(((11)/(10)))_n ))t^(2n) +C  =5(t)^(1/5)  _2 F_1 ((3/5),(1/(10))∣((11)/(10)),t^2 )+C  =5((sin(x)))^(1/5)  _2 F_1 ((3/5),(1/(10))∣((11)/(10));sin^2 x)+C

$$\int{tan}^{\frac{\mathrm{1}}{\mathrm{5}}} \left({x}\right)\:{cot}\left({x}\right){sec}\left({x}\right){dx} \\ $$$$=\int\frac{{sin}^{−\mathrm{4}/\mathrm{5}} {x}}{{cos}^{\mathrm{1}/\mathrm{5}} {x}}\:{dx}\:\:\:\:\:\:\:\:\:\:\:{sinx}={t} \\ $$$$=\int{t}^{−\mathrm{4}/\mathrm{5}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{−\mathrm{3}/\mathrm{5}} {dt}\:\:\: \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{3}}{\mathrm{5}}\right)_{{n}} }{{n}!}\int{t}^{−\mathrm{4}/\mathrm{5}} {t}^{\mathrm{2}{n}} {dt}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{3}}{\mathrm{5}}\right)_{{n}} }{{n}!}.\frac{\mathrm{1}}{\mathrm{2}{n}+\frac{\mathrm{1}}{\mathrm{5}}}{t}^{\mathrm{2}{n}+\frac{\mathrm{4}}{\mathrm{5}}} +{C} \\ $$$$=\frac{{t}^{\mathrm{1}/\mathrm{5}} }{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{3}}{\mathrm{5}}\right)_{{n}} }{{n}!\left({n}+\frac{\mathrm{1}}{\mathrm{10}}\right)}{t}^{\mathrm{2}{n}} +{C} \\ $$$$=\frac{{t}^{\mathrm{1}/\mathrm{5}} }{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{3}}{\mathrm{5}}\right)_{{n}} \Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{10}}\right)}{{n}!\Gamma\left({n}+\frac{\mathrm{11}}{\mathrm{10}}\right)}{t}^{\mathrm{2}{n}} =\mathrm{5}\sqrt[{\mathrm{5}}]{{t}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{3}}{\mathrm{5}}\right)_{{n}} \left(\frac{\mathrm{1}}{\mathrm{10}}\right)_{{n}} }{{n}!\left(\frac{\mathrm{11}}{\mathrm{10}}\right)_{{n}} }{t}^{\mathrm{2}{n}} +{C} \\ $$$$=\mathrm{5}\sqrt[{\mathrm{5}}]{{t}}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{5}},\frac{\mathrm{1}}{\mathrm{10}}\mid\frac{\mathrm{11}}{\mathrm{10}},{t}^{\mathrm{2}} \right)+{C} \\ $$$$=\mathrm{5}\sqrt[{\mathrm{5}}]{{sin}\left({x}\right)}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{5}},\frac{\mathrm{1}}{\mathrm{10}}\mid\frac{\mathrm{11}}{\mathrm{10}};{sin}^{\mathrm{2}} {x}\right)+{C} \\ $$

Commented by Ar Brandon last updated on 17/Jun/21

Happy Birthday on this forum. Haha ! In one   year I think you′ve progressed a lot. Thanks   for your teachings, Sir.  😉

$$\mathrm{Happy}\:\mathrm{Birthday}\:\mathrm{on}\:\mathrm{this}\:\mathrm{forum}.\:\mathrm{Haha}\:!\:\mathrm{In}\:\mathrm{one}\: \\ $$$$\mathrm{year}\:\mathrm{I}\:\mathrm{think}\:\mathrm{you}'\mathrm{ve}\:\mathrm{progressed}\:\mathrm{a}\:\mathrm{lot}.\:\mathrm{Thanks} \\ $$$$\:\mathrm{for}\:\mathrm{your}\:\mathrm{teachings},\:\mathrm{Sir}. \\ $$😉

Commented by Dwaipayan Shikari last updated on 17/Jun/21

 Hahahaha Young Boys .But i have   turned myself into a Cat.  I was a Black hole. It will  take another year to become a   Man

$$\:{Hahahaha}\:\mathrm{Y}{oung}\:{Boys}\:.{But}\:{i}\:{have}\: \\ $$$${turned}\:{myself}\:{into}\:{a}\:{Cat}. \\ $$$${I}\:{was}\:{a}\:{Black}\:{hole}.\:{It}\:{will} \\ $$$${take}\:{another}\:{year}\:{to}\:{become}\:{a}\: \\ $$$${Man} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com