Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 143638 by mnjuly1970 last updated on 16/Jun/21

          ......Calculus....  𝛗:=^? ∫_0 ^( 1) ((ln(1−x)ln(x)(ln(((1−x)/x))))/x) dx    m.n....

$$\:\:\:\:\:\:\:\:\:\:......{Calculus}.... \\ $$$$\boldsymbol{\phi}:\overset{?} {=}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right){ln}\left({x}\right)\left({ln}\left(\frac{\mathrm{1}−{x}}{{x}}\right)\right)}{{x}}\:{dx} \\ $$$$\:\:{m}.{n}.... \\ $$$$ \\ $$

Commented by TheHoneyCat last updated on 17/Jun/21

I did not get the result but here is the prof that it is well defined    let α∈]0,1[  let f: x→((ln(1−x)lnx.ln((1/x)−1))/x)  f∼_0 ((−x.lnx.ln((1/x)))/x)  ∼_0 ln(x)^2     so ∫_0 ^α f   is well defined if and only if ∫_0 ^α ln^2  is too  (∗)    ∫_0 ^α ln^2 =[(xlnx−x)lnx]_0 ^α −∫_0 ^α ((xlnx−x)/x)dx  =(αlnα−α)lnα − 0 −∫_0 ^α (lnx − 1) dx  =(αlnα−α)lnα +α −∫_0 ^α lnx dx  =(αlnα−α)lnα +α −[xlnx−x]_0 ^α   =(αlnα−α)(1+lnα) +α ∈R  so ∫_0 ^α f∈R    also:  f∼_1 ((ln(1−x).x.ln(1−x))/1)  ∼_1 ln(1−x)^2     considering y=x−1  it is obvious that we get the same integral as (∗)  so ∫_α ^1 f∈R    thus:  ∫_0 ^1 f(x)dx ∈R

$$\mathrm{I}\:\mathrm{did}\:\mathrm{not}\:\mathrm{get}\:\mathrm{the}\:\mathrm{result}\:\mathrm{but}\:\mathrm{here}\:\mathrm{is}\:\mathrm{the}\:\mathrm{prof}\:\mathrm{that}\:\mathrm{it}\:\mathrm{is}\:\mathrm{well}\:\mathrm{defined} \\ $$$$ \\ $$$$\left.\mathrm{let}\:\alpha\in\right]\mathrm{0},\mathrm{1}\left[\right. \\ $$$$\mathrm{let}\:\mathrm{f}:\:{x}\rightarrow\frac{\mathrm{ln}\left(\mathrm{1}−{x}\right)\mathrm{ln}{x}.\mathrm{ln}\left(\frac{\mathrm{1}}{{x}}−\mathrm{1}\right)}{{x}} \\ $$$${f}\underset{\mathrm{0}} {\sim}\frac{−{x}.\mathrm{ln}{x}.\mathrm{ln}\left(\frac{\mathrm{1}}{{x}}\right)}{{x}} \\ $$$$\underset{\mathrm{0}} {\sim}\mathrm{ln}\left({x}\right)^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{so}\:\int_{\mathrm{0}} ^{\alpha} {f}\:\:\:\mathrm{is}\:\mathrm{well}\:\mathrm{defined}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:\int_{\mathrm{0}} ^{\alpha} \mathrm{ln}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{too}\:\:\left(\ast\right) \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\alpha} \mathrm{ln}^{\mathrm{2}} =\left[\left({x}\mathrm{ln}{x}−{x}\right)\mathrm{ln}{x}\right]_{\mathrm{0}} ^{\alpha} −\int_{\mathrm{0}} ^{\alpha} \frac{{x}\mathrm{ln}{x}−{x}}{{x}}{dx} \\ $$$$=\left(\alpha\mathrm{ln}\alpha−\alpha\right)\mathrm{ln}\alpha\:−\:\mathrm{0}\:−\int_{\mathrm{0}} ^{\alpha} \left(\mathrm{ln}{x}\:−\:\mathrm{1}\right)\:{dx} \\ $$$$=\left(\alpha\mathrm{ln}\alpha−\alpha\right)\mathrm{ln}\alpha\:+\alpha\:−\int_{\mathrm{0}} ^{\alpha} \mathrm{ln}{x}\:{dx} \\ $$$$=\left(\alpha\mathrm{ln}\alpha−\alpha\right)\mathrm{ln}\alpha\:+\alpha\:−\left[{x}\mathrm{ln}{x}−{x}\right]_{\mathrm{0}} ^{\alpha} \\ $$$$=\left(\alpha\mathrm{ln}\alpha−\alpha\right)\left(\mathrm{1}+\mathrm{ln}\alpha\right)\:+\alpha\:\in\mathbb{R} \\ $$$$\mathrm{so}\:\int_{\mathrm{0}} ^{\alpha} {f}\in\mathbb{R} \\ $$$$ \\ $$$$\mathrm{also}: \\ $$$${f}\underset{\mathrm{1}} {\sim}\frac{\mathrm{ln}\left(\mathrm{1}−{x}\right).{x}.\mathrm{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}} \\ $$$$\underset{\mathrm{1}} {\sim}\mathrm{ln}\left(\mathrm{1}−{x}\right)^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{considering}\:{y}={x}−\mathrm{1} \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{obvious}\:\mathrm{that}\:\mathrm{we}\:\mathrm{get}\:\mathrm{the}\:\mathrm{same}\:\mathrm{integral}\:\mathrm{as}\:\left(\ast\right) \\ $$$$\mathrm{so}\:\int_{\alpha} ^{\mathrm{1}} {f}\in\mathbb{R} \\ $$$$ \\ $$$$\mathrm{thus}: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}\:\in\mathbb{R} \\ $$

Commented by mnjuly1970 last updated on 17/Jun/21

thanks alot for your explanations...

$${thanks}\:{alot}\:{for}\:{your}\:{explanations}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com