Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 143606 by bobhans last updated on 16/Jun/21

Answered by TheHoneyCat last updated on 16/Jun/21

f surjective ⇔  [1, +∞[⊂f(R)    knowing that f∈C^0 (R,[1,+∞[)  and that  f(x)→_(x→∓∞) +∞  ∀y∈R        ∃x∣f(x)=y⇒[y,+∞[⊂f(R)    therefore:  f surjective ⇔ ∃x∈R∣f(x)=1  ⇔∃x∈R∣log_(10) ((√(3x^2 −4x+k+1))+10)=1  ⇔∃x∈R∣(√(3x^2 −4x+k+1))+10=10^1 =10  ⇔∃x∈R∣(√(3x^2 −4x+k+1))=0  knowing that f must be well defined, there can only be one such x  otherwise, the values of 3X^2 −4X+k+1 inbetween would be negative    thus:  f surjective and well defined  ⇔∃!x∈R∣3x^2 −4x+k+1=0  ⇔4^2 −4×3×(k+1)=0  ⇔4−3(k+1)=0  ⇔k+1=(4/3)  ⇔k= (1/3) _■     Answer (A)

$${f}\:\mathrm{surjective}\:\Leftrightarrow\:\:\left[\mathrm{1},\:+\infty\left[\subset{f}\left(\mathbb{R}\right)\right.\right. \\ $$$$ \\ $$$$\mathrm{knowing}\:\mathrm{that}\:{f}\in\mathscr{C}^{\mathrm{0}} \left(\mathbb{R},\left[\mathrm{1},+\infty\left[\right)\right.\right. \\ $$$$\mathrm{and}\:\mathrm{that}\:\:{f}\left({x}\right)\underset{{x}\rightarrow\mp\infty} {\rightarrow}+\infty \\ $$$$\forall{y}\in\mathbb{R}\:\:\:\:\:\:\:\:\exists{x}\mid{f}\left({x}\right)={y}\Rightarrow\left[{y},+\infty\left[\subset{f}\left(\mathbb{R}\right)\right.\right. \\ $$$$ \\ $$$$\mathrm{therefore}: \\ $$$${f}\:\mathrm{surjective}\:\Leftrightarrow\:\exists{x}\in\mathbb{R}\mid{f}\left({x}\right)=\mathrm{1} \\ $$$$\Leftrightarrow\exists{x}\in\mathbb{R}\mid\mathrm{log}_{\mathrm{10}} \left(\sqrt{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{k}+\mathrm{1}}+\mathrm{10}\right)=\mathrm{1} \\ $$$$\Leftrightarrow\exists{x}\in\mathbb{R}\mid\sqrt{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{k}+\mathrm{1}}+\mathrm{10}=\mathrm{10}^{\mathrm{1}} =\mathrm{10} \\ $$$$\Leftrightarrow\exists{x}\in\mathbb{R}\mid\sqrt{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{k}+\mathrm{1}}=\mathrm{0} \\ $$$$\mathrm{knowing}\:\mathrm{that}\:{f}\:\mathrm{must}\:\mathrm{be}\:\mathrm{well}\:\mathrm{defined},\:\mathrm{there}\:\mathrm{can}\:\mathrm{only}\:\mathrm{be}\:\mathrm{one}\:\mathrm{such}\:{x} \\ $$$$\mathrm{otherwise},\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{3X}^{\mathrm{2}} −\mathrm{4X}+\mathrm{k}+\mathrm{1}\:\mathrm{inbetween}\:\mathrm{would}\:\mathrm{be}\:\mathrm{negative} \\ $$$$ \\ $$$$\mathrm{thus}: \\ $$$${f}\:\mathrm{surjective}\:\mathrm{and}\:\mathrm{well}\:\mathrm{defined} \\ $$$$\Leftrightarrow\exists!{x}\in\mathbb{R}\mid\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{k}+\mathrm{1}=\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{4}^{\mathrm{2}} −\mathrm{4}×\mathrm{3}×\left(\mathrm{k}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{4}−\mathrm{3}\left(\mathrm{k}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{k}+\mathrm{1}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\Leftrightarrow\mathrm{k}=\:\frac{\mathrm{1}}{\mathrm{3}}\:_{\blacksquare} \\ $$$$ \\ $$$$\mathrm{Answer}\:\left(\mathrm{A}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com