Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 143131 by mohammad17 last updated on 10/Jun/21

find the partial sums of Σ_(n=1) ^∞ (1/(n^2 (n+1)))

$${find}\:{the}\:{partial}\:{sums}\:{of}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)} \\ $$

Answered by qaz last updated on 10/Jun/21

Σ_(n=1) ^∞ (1/(n^2 (n+1)))  =∫_0 ^1 Σ_(n=1) ^∞ (x^n /n^2 )dx  =∫_0 ^1 Li_2 (x)dx  =xLi_2 (x)∣_0 ^1 +∫_0 ^1 ((xln(1−x))/x)dx  =(π^2 /6)+∫_0 ^1 ln(1−x)dx  =(π^2 /6)−1

$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} \left(\mathrm{n}+\mathrm{1}\right)} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} }\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$$$=\mathrm{xLi}_{\mathrm{2}} \left(\mathrm{x}\right)\mid_{\mathrm{0}} ^{\mathrm{1}} +\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{xln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{dx} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\mathrm{1} \\ $$

Commented by mohammad17 last updated on 11/Jun/21

thank you sir but why the interval of the  integral from(0 to 1)

$${thank}\:{you}\:{sir}\:{but}\:{why}\:{the}\:{interval}\:{of}\:{the} \\ $$$${integral}\:{from}\left(\mathrm{0}\:{to}\:\mathrm{1}\right) \\ $$

Answered by Olaf_Thorendsen last updated on 10/Jun/21

S = Σ_(n=1) ^∞ (1/(n^2 (n+1)))  S = Σ_(n=1) ^∞ ((1/n^2 )−(1/n)+(1/(n+1)))  S = Σ_(n=1) ^∞ (1/n^2 )−Σ_(n=1) ^∞ ((1/n)−(1/(n+1)))  S = (π^2 /6)−1

$$\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)} \\ $$$$\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }−\frac{\mathrm{1}}{{n}}+\frac{\mathrm{1}}{{n}+\mathrm{1}}\right) \\ $$$$\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right) \\ $$$$\mathrm{S}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com