Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 142389 by alcohol last updated on 31/May/21

∫(e^x /(cosx))dx

$$\int\frac{{e}^{{x}} }{{cosx}}{dx} \\ $$

Answered by ArielVyny last updated on 31/May/21

=[e^x ×(1/(cosx))]−∫e^x ×−((sinx)/(cos^2 x))dx  Nous considérons U'=  ∫e^x ×((sinx)/(cos^2 x))dx=[tgx×e^x sinx]−∫tgx(e^x sinx+e^x cosx)  I=[(e^x /(cosx))+tgx×e^x sinx]−∫e^x ×((sin^2 x)/(cosx))dx−∫e^x sinxdx  l integrale ∫e^x sinxdx  etant simple  cherchons  ∫e^x ×((sin^2 x)/(cosx))dx  ∫e^x ×((1−cos^2 x)/(cosx))dx  ∫(e^x /(cosx))−∫e^x cosxdx  on obtient  I=[e^x ((1/(cosx))+tgx×sinx)]−∫e^x sinxdx−(∫(e^x /(cosx))−∫e^x cosx)  2I=[e^x ((1/(cosx))+((sin^2 x)/(cosx)))]+∫e^x cosxdx−∫e^x sinxdx  ∫e^x cosxdx=[e^x cosx]+∫e^x sinxdx  2I=[e^x (((1+sin^2 x)/(cosx)))+cosx]  I=(1/2) [e^x (((1+sin^2 x)/(cosx)))+cosx]+cte

$$=\left[{e}^{{x}} ×\frac{\mathrm{1}}{{cosx}}\right]−\int{e}^{{x}} ×−\frac{{sinx}}{{cos}^{\mathrm{2}} {x}}{dx} \\ $$Nous considérons U'= $$\int{e}^{{x}} ×\frac{{sinx}}{{cos}^{\mathrm{2}} {x}}{dx}=\left[{tgx}×{e}^{{x}} {sinx}\right]−\int{tgx}\left({e}^{{x}} {sinx}+{e}^{{x}} {cosx}\right) \\ $$$${I}=\left[\frac{{e}^{{x}} }{{cosx}}+{tgx}×{e}^{{x}} {sinx}\right]−\int{e}^{{x}} ×\frac{{sin}^{\mathrm{2}} {x}}{{cosx}}{dx}−\int{e}^{{x}} {sinxdx} \\ $$$${l}\:{integrale}\:\int{e}^{{x}} {sinxdx}\:\:{etant}\:{simple} \\ $$$${cherchons}\:\:\int{e}^{{x}} ×\frac{{sin}^{\mathrm{2}} {x}}{{cosx}}{dx} \\ $$$$\int{e}^{{x}} ×\frac{\mathrm{1}−{cos}^{\mathrm{2}} {x}}{{cosx}}{dx} \\ $$$$\int\frac{{e}^{{x}} }{{cosx}}−\int{e}^{{x}} {cosxdx} \\ $$$${on}\:{obtient} \\ $$$${I}=\left[{e}^{{x}} \left(\frac{\mathrm{1}}{{cosx}}+{tgx}×{sinx}\right)\right]−\int{e}^{{x}} {sinxdx}−\left(\int\frac{{e}^{{x}} }{{cosx}}−\int{e}^{{x}} {cosx}\right) \\ $$$$\mathrm{2}{I}=\left[{e}^{{x}} \left(\frac{\mathrm{1}}{{cosx}}+\frac{{sin}^{\mathrm{2}} {x}}{{cosx}}\right)\right]+\int{e}^{{x}} {cosxdx}−\int{e}^{{x}} {sinxdx} \\ $$$$\int{e}^{{x}} {cosxdx}=\left[{e}^{{x}} {cosx}\right]+\int{e}^{{x}} {sinxdx} \\ $$$$\mathrm{2}{I}=\left[{e}^{{x}} \left(\frac{\mathrm{1}+{sin}^{\mathrm{2}} {x}}{{cosx}}\right)+{cosx}\right] \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\:\left[{e}^{{x}} \left(\frac{\mathrm{1}+{sin}^{\mathrm{2}} {x}}{{cosx}}\right)+{cosx}\right]+{cte} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com