Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 140751 by peter frank last updated on 12/May/21

Answered by Ar Brandon last updated on 12/May/21

(1+x)^n =Σ_(r=0) ^n  ^n C_r x^r    ^n C_(r−1) ,  ^n C_r , and   ^n C_(r+1)  are in AP   ^n C_(r−1) + ^n C_(r+1) =2 ^n C_r   ((n!)/((n−r+1)!(r−1)!))+((n!)/((n−r−1)!(r+1)!))=((2n!)/((n−r)!r!))  ((n!(r+1)r+n!(n−r+1)(n−r))/((n−r+1)!(r+1)!))=((2n!)/((n−r)!r!))  (((r+1)r+(n−r+1)(n−r))/((n−r+1)(r+1)))=2  r^2 +r+n^2 −nr−nr+r^2 +n−r=2(nr+n−r^2 −r+r+1)  4r^2 +n^2 −4nr−n−2=0  n^2 −n(4r+1)+4r^2 −2=0

$$\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{n}} =\underset{\mathrm{r}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{r}} \mathrm{x}^{\mathrm{r}} \\ $$$$\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{r}−\mathrm{1}} ,\:\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{r}} ,\:\mathrm{and}\:\:\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{r}+\mathrm{1}} \:\mathrm{are}\:\mathrm{in}\:\mathrm{AP} \\ $$$$\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{r}−\mathrm{1}} +\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{r}+\mathrm{1}} =\mathrm{2}\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{r}} \\ $$$$\frac{\mathrm{n}!}{\left(\mathrm{n}−\mathrm{r}+\mathrm{1}\right)!\left(\mathrm{r}−\mathrm{1}\right)!}+\frac{\mathrm{n}!}{\left(\mathrm{n}−\mathrm{r}−\mathrm{1}\right)!\left(\mathrm{r}+\mathrm{1}\right)!}=\frac{\mathrm{2n}!}{\left(\mathrm{n}−\mathrm{r}\right)!\mathrm{r}!} \\ $$$$\frac{\mathrm{n}!\left(\mathrm{r}+\mathrm{1}\right)\mathrm{r}+\mathrm{n}!\left(\mathrm{n}−\mathrm{r}+\mathrm{1}\right)\left(\mathrm{n}−\mathrm{r}\right)}{\left(\mathrm{n}−\mathrm{r}+\mathrm{1}\right)!\left(\mathrm{r}+\mathrm{1}\right)!}=\frac{\mathrm{2n}!}{\left(\mathrm{n}−\mathrm{r}\right)!\mathrm{r}!} \\ $$$$\frac{\left(\mathrm{r}+\mathrm{1}\right)\mathrm{r}+\left(\mathrm{n}−\mathrm{r}+\mathrm{1}\right)\left(\mathrm{n}−\mathrm{r}\right)}{\left(\mathrm{n}−\mathrm{r}+\mathrm{1}\right)\left(\mathrm{r}+\mathrm{1}\right)}=\mathrm{2} \\ $$$$\mathrm{r}^{\mathrm{2}} +\mathrm{r}+\mathrm{n}^{\mathrm{2}} −\mathrm{nr}−\mathrm{nr}+\mathrm{r}^{\mathrm{2}} +\mathrm{n}−\mathrm{r}=\mathrm{2}\left(\mathrm{nr}+\mathrm{n}−\mathrm{r}^{\mathrm{2}} −\mathrm{r}+\mathrm{r}+\mathrm{1}\right) \\ $$$$\mathrm{4r}^{\mathrm{2}} +\mathrm{n}^{\mathrm{2}} −\mathrm{4nr}−\mathrm{n}−\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{n}^{\mathrm{2}} −\mathrm{n}\left(\mathrm{4r}+\mathrm{1}\right)+\mathrm{4r}^{\mathrm{2}} −\mathrm{2}=\mathrm{0} \\ $$

Commented by peter frank last updated on 12/May/21

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com