Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 139918 by mathsuji last updated on 02/May/21

1+cos2°+cos4°+cos6°+...+cos88°

$$\mathrm{1}+{cos}\mathrm{2}°+{cos}\mathrm{4}°+{cos}\mathrm{6}°+...+{cos}\mathrm{88}° \\ $$

Answered by mr W last updated on 02/May/21

Σ_(k=0) ^(44) (cos ((2kπ)/(180))+i sin ((2kπ)/(180)))=Σ_(k=0) ^(44) e^(((2kπ)/(180))i)   =((1−e^(((2πi)/(180))×45) )/(1−e^((2πi)/(180)) ))=((1−i)/((1−cos (π/(90)))−isin (π/(90))))  =(((1−i)[(1−cos (π/(90)))+i sin (π/(90))])/((1−cos (π/(90)))^2 +sin^2  (π/(90))))  =((1−cos (π/(90))+ sin (π/(90))−i(1−cos (π/(90))+sin (π/(90))))/((1−cos (π/(90)))^2 +sin^2  (π/(90))))  =((1−cos (π/(90))+ sin (π/(90))−i(1−cos (π/(90))+sin (π/(90))))/(2(1−cos (π/(90)))))    1+cos 2°+cos 4°+...+cos 88°=  =Σ_(k=0) ^(44) cos ((2kπ)/(180))  =((1−cos (π/(90))+ sin (π/(90)))/(2(1−cos (π/(90)))))  =(1/2)(1+cot (π/(180)))  =(1/2)(1+cot 1°)

$$\underset{{k}=\mathrm{0}} {\overset{\mathrm{44}} {\sum}}\left(\mathrm{cos}\:\frac{\mathrm{2}{k}\pi}{\mathrm{180}}+{i}\:\mathrm{sin}\:\frac{\mathrm{2}{k}\pi}{\mathrm{180}}\right)=\underset{{k}=\mathrm{0}} {\overset{\mathrm{44}} {\sum}}{e}^{\frac{\mathrm{2}{k}\pi}{\mathrm{180}}{i}} \\ $$$$=\frac{\mathrm{1}−{e}^{\frac{\mathrm{2}\pi{i}}{\mathrm{180}}×\mathrm{45}} }{\mathrm{1}−{e}^{\frac{\mathrm{2}\pi{i}}{\mathrm{180}}} }=\frac{\mathrm{1}−{i}}{\left(\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}\right)−{i}\mathrm{sin}\:\frac{\pi}{\mathrm{90}}} \\ $$$$=\frac{\left(\mathrm{1}−{i}\right)\left[\left(\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}\right)+{i}\:\mathrm{sin}\:\frac{\pi}{\mathrm{90}}\right]}{\left(\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}\right)^{\mathrm{2}} +\mathrm{sin}^{\mathrm{2}} \:\frac{\pi}{\mathrm{90}}} \\ $$$$=\frac{\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}+\:\mathrm{sin}\:\frac{\pi}{\mathrm{90}}−{i}\left(\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}+\mathrm{sin}\:\frac{\pi}{\mathrm{90}}\right)}{\left(\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}\right)^{\mathrm{2}} +\mathrm{sin}^{\mathrm{2}} \:\frac{\pi}{\mathrm{90}}} \\ $$$$=\frac{\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}+\:\mathrm{sin}\:\frac{\pi}{\mathrm{90}}−{i}\left(\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}+\mathrm{sin}\:\frac{\pi}{\mathrm{90}}\right)}{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}\right)} \\ $$$$ \\ $$$$\mathrm{1}+\mathrm{cos}\:\mathrm{2}°+\mathrm{cos}\:\mathrm{4}°+...+\mathrm{cos}\:\mathrm{88}°= \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\mathrm{44}} {\sum}}\mathrm{cos}\:\frac{\mathrm{2}{k}\pi}{\mathrm{180}} \\ $$$$=\frac{\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}+\:\mathrm{sin}\:\frac{\pi}{\mathrm{90}}}{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{cot}\:\frac{\pi}{\mathrm{180}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{cot}\:\mathrm{1}°\right) \\ $$

Commented by mathsuji last updated on 02/May/21

thank you very much Sir..

$${thank}\:{you}\:{very}\:{much}\:{Sir}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com