Question Number 139918 by mathsuji last updated on 02/May/21 | ||
$$\mathrm{1}+{cos}\mathrm{2}°+{cos}\mathrm{4}°+{cos}\mathrm{6}°+...+{cos}\mathrm{88}° \\ $$ | ||
Answered by mr W last updated on 02/May/21 | ||
$$\underset{{k}=\mathrm{0}} {\overset{\mathrm{44}} {\sum}}\left(\mathrm{cos}\:\frac{\mathrm{2}{k}\pi}{\mathrm{180}}+{i}\:\mathrm{sin}\:\frac{\mathrm{2}{k}\pi}{\mathrm{180}}\right)=\underset{{k}=\mathrm{0}} {\overset{\mathrm{44}} {\sum}}{e}^{\frac{\mathrm{2}{k}\pi}{\mathrm{180}}{i}} \\ $$$$=\frac{\mathrm{1}−{e}^{\frac{\mathrm{2}\pi{i}}{\mathrm{180}}×\mathrm{45}} }{\mathrm{1}−{e}^{\frac{\mathrm{2}\pi{i}}{\mathrm{180}}} }=\frac{\mathrm{1}−{i}}{\left(\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}\right)−{i}\mathrm{sin}\:\frac{\pi}{\mathrm{90}}} \\ $$$$=\frac{\left(\mathrm{1}−{i}\right)\left[\left(\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}\right)+{i}\:\mathrm{sin}\:\frac{\pi}{\mathrm{90}}\right]}{\left(\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}\right)^{\mathrm{2}} +\mathrm{sin}^{\mathrm{2}} \:\frac{\pi}{\mathrm{90}}} \\ $$$$=\frac{\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}+\:\mathrm{sin}\:\frac{\pi}{\mathrm{90}}−{i}\left(\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}+\mathrm{sin}\:\frac{\pi}{\mathrm{90}}\right)}{\left(\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}\right)^{\mathrm{2}} +\mathrm{sin}^{\mathrm{2}} \:\frac{\pi}{\mathrm{90}}} \\ $$$$=\frac{\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}+\:\mathrm{sin}\:\frac{\pi}{\mathrm{90}}−{i}\left(\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}+\mathrm{sin}\:\frac{\pi}{\mathrm{90}}\right)}{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}\right)} \\ $$$$ \\ $$$$\mathrm{1}+\mathrm{cos}\:\mathrm{2}°+\mathrm{cos}\:\mathrm{4}°+...+\mathrm{cos}\:\mathrm{88}°= \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\mathrm{44}} {\sum}}\mathrm{cos}\:\frac{\mathrm{2}{k}\pi}{\mathrm{180}} \\ $$$$=\frac{\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}+\:\mathrm{sin}\:\frac{\pi}{\mathrm{90}}}{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\frac{\pi}{\mathrm{90}}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{cot}\:\frac{\pi}{\mathrm{180}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{cot}\:\mathrm{1}°\right) \\ $$ | ||
Commented by mathsuji last updated on 02/May/21 | ||
$${thank}\:{you}\:{very}\:{much}\:{Sir}.. \\ $$ | ||