Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 139911 by mathdanisur last updated on 02/May/21

∫_( −1) ^( 1) ((1+z^2 )/(1+z^4 )) dz=?

$$\underset{\:−\mathrm{1}} {\overset{\:\mathrm{1}} {\int}}\frac{\mathrm{1}+\boldsymbol{{z}}^{\mathrm{2}} }{\mathrm{1}+\boldsymbol{{z}}^{\mathrm{4}} }\:{d}\boldsymbol{{z}}=? \\ $$

Answered by Dwaipayan Shikari last updated on 02/May/21

∫_(−1) ^1 ((1+z^2 )/(1+z^4 ))dz  =(1/2)∫_(−1) ^1 (1/((z^2 −(√2)z+1)))+(1/((z^2 +(√2)z+1)))dz  =∫_0 ^1 (1/(z^2 −(√2)z+1 ))+(1/(z^2 +(√2)z+1))dz         =[(√2)tan^(−1) ((√2)z−1)]_0 ^1 +[(√2)tan^(−1) ((√2)z+1)]_0 ^1   =(√2) tan^(−1) ((√2)−1)+(√2) tan^(−1) ((√2)+1)  =(√2) tan^(−1) (((√2)−1+(√2)+1)/(1−(2−1)))=(√2) .(π/2)=(π/( (√2)))

$$\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{\mathrm{1}+{z}^{\mathrm{2}} }{\mathrm{1}+{z}^{\mathrm{4}} }{dz} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{\mathrm{1}}{\left({z}^{\mathrm{2}} −\sqrt{\mathrm{2}}{z}+\mathrm{1}\right)}+\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} +\sqrt{\mathrm{2}}{z}+\mathrm{1}\right)}{dz} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{z}^{\mathrm{2}} −\sqrt{\mathrm{2}}{z}+\mathrm{1}\:}+\frac{\mathrm{1}}{{z}^{\mathrm{2}} +\sqrt{\mathrm{2}}{z}+\mathrm{1}}{dz}\:\:\:\:\:\:\: \\ $$$$=\left[\sqrt{\mathrm{2}}{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}{z}−\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\left[\sqrt{\mathrm{2}}{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}{z}+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\sqrt{\mathrm{2}}\:{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}−\mathrm{1}\right)+\sqrt{\mathrm{2}}\:{tan}^{−\mathrm{1}} \left(\sqrt{\mathrm{2}}+\mathrm{1}\right) \\ $$$$=\sqrt{\mathrm{2}}\:{tan}^{−\mathrm{1}} \frac{\sqrt{\mathrm{2}}−\mathrm{1}+\sqrt{\mathrm{2}}+\mathrm{1}}{\mathrm{1}−\left(\mathrm{2}−\mathrm{1}\right)}=\sqrt{\mathrm{2}}\:.\frac{\pi}{\mathrm{2}}=\frac{\pi}{\:\sqrt{\mathrm{2}}} \\ $$

Commented by mathdanisur last updated on 02/May/21

Sir, answer: 0 or π/(√2) .?

$${Sir},\:{answer}:\:\mathrm{0}\:{or}\:\pi/\sqrt{\mathrm{2}}\:.? \\ $$

Commented by Dwaipayan Shikari last updated on 02/May/21

(π/( (√2))). 0 is not possible, ((1+z^2 )/(1+z^4 )) is an even function

$$\frac{\pi}{\:\sqrt{\mathrm{2}}}.\:\mathrm{0}\:{is}\:{not}\:{possible},\:\frac{\mathrm{1}+{z}^{\mathrm{2}} }{\mathrm{1}+{z}^{\mathrm{4}} }\:{is}\:{an}\:{even}\:{function} \\ $$

Commented by MJS_new last updated on 02/May/21

((1+z^2 )/(1+z^4 ))≥0∀z∈R; how could the integral be zero?

$$\frac{\mathrm{1}+{z}^{\mathrm{2}} }{\mathrm{1}+{z}^{\mathrm{4}} }\geqslant\mathrm{0}\forall{z}\in\mathbb{R};\:\mathrm{how}\:\mathrm{could}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{be}\:\mathrm{zero}? \\ $$

Commented by mathdanisur last updated on 02/May/21

thanks Sir

$${thanks}\:{Sir} \\ $$

Answered by Mathspace last updated on 02/May/21

I=∫_(−1) ^1 ((1+(1/z^2 ))/(z^2 +(1/z^2 )))dz  =2∫_0 ^1  ((1+(1/z^2 ))/((z−(1/z))^2 +2))dz  =_(z−(1/z)=−t)  2 ∫_∞ ^0   ((−dt)/(t^2 +2))  =2∫_0 ^∞   (dt/(t^2 +2)) =_(t=.(√2)y)   2∫_0 ^∞   (((√2)dy)/(2(1+y^2 )))  =(√2).[arctany]_0 ^∞  =((π(√2))/2)

$${I}=\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{\mathrm{1}+\frac{\mathrm{1}}{{z}^{\mathrm{2}} }}{{z}^{\mathrm{2}} +\frac{\mathrm{1}}{{z}^{\mathrm{2}} }}{dz} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}+\frac{\mathrm{1}}{{z}^{\mathrm{2}} }}{\left({z}−\frac{\mathrm{1}}{{z}}\right)^{\mathrm{2}} +\mathrm{2}}{dz} \\ $$$$=_{{z}−\frac{\mathrm{1}}{{z}}=−{t}} \:\mathrm{2}\:\int_{\infty} ^{\mathrm{0}} \:\:\frac{−{dt}}{{t}^{\mathrm{2}} +\mathrm{2}} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{2}}\:=_{{t}=.\sqrt{\mathrm{2}}{y}} \:\:\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\:\frac{\sqrt{\mathrm{2}}{dy}}{\mathrm{2}\left(\mathrm{1}+{y}^{\mathrm{2}} \right)} \\ $$$$=\sqrt{\mathrm{2}}.\left[{arctany}\right]_{\mathrm{0}} ^{\infty} \:=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$

Commented by mathdanisur last updated on 02/May/21

thank you Sir

$${thank}\:{you}\:{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com