Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 139878 by bramlexs22 last updated on 02/May/21

       I(α) = ∫_α ^α^2   ((sin αx)/x) dx          ((dI(α))/dα) =?

$$\:\:\:\:\:\:\:\mathrm{I}\left(\alpha\right)\:=\:\underset{\alpha} {\overset{\alpha^{\mathrm{2}} } {\int}}\:\frac{\mathrm{sin}\:\alpha\mathrm{x}}{\mathrm{x}}\:\mathrm{dx}\: \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{dI}\left(\alpha\right)}{\mathrm{d}\alpha}\:=? \\ $$

Answered by EDWIN88 last updated on 02/May/21

     (dI/dα) = ∫_α ^α^2   (∂/∂α)(((sin αx)/x)) dx + ((sin α^3 )/α^2 )(2α)−((sin α^2 )/α)(1)             = ∫_α ^α^2   cos αx dx + ((2sin α^3 −sin α^2 )/α)            = [ (1/α)sin αx ]_α ^α^2  + ((2sin α^3 −sin α^2 )/α)           = ((sin α^3 −sin α^2 )/α)+((2sin α^3 −sin α^2 )/α)          = ((3sin α^3 −2sin α^2 )/α)

$$\:\:\:\:\:\frac{\mathrm{dI}}{\mathrm{d}\alpha}\:=\:\underset{\alpha} {\overset{\alpha^{\mathrm{2}} } {\int}}\:\frac{\partial}{\partial\alpha}\left(\frac{\mathrm{sin}\:\alpha\mathrm{x}}{\mathrm{x}}\right)\:\mathrm{dx}\:+\:\frac{\mathrm{sin}\:\alpha^{\mathrm{3}} }{\alpha^{\mathrm{2}} }\left(\mathrm{2}\alpha\right)−\frac{\mathrm{sin}\:\alpha^{\mathrm{2}} }{\alpha}\left(\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\underset{\alpha} {\overset{\alpha^{\mathrm{2}} } {\int}}\:\mathrm{cos}\:\alpha\mathrm{x}\:\mathrm{dx}\:+\:\frac{\mathrm{2sin}\:\alpha^{\mathrm{3}} −\mathrm{sin}\:\alpha^{\mathrm{2}} }{\alpha} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\left[\:\frac{\mathrm{1}}{\alpha}\mathrm{sin}\:\alpha\mathrm{x}\:\right]_{\alpha} ^{\alpha^{\mathrm{2}} } +\:\frac{\mathrm{2sin}\:\alpha^{\mathrm{3}} −\mathrm{sin}\:\alpha^{\mathrm{2}} }{\alpha} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{sin}\:\alpha^{\mathrm{3}} −\mathrm{sin}\:\alpha^{\mathrm{2}} }{\alpha}+\frac{\mathrm{2sin}\:\alpha^{\mathrm{3}} −\mathrm{sin}\:\alpha^{\mathrm{2}} }{\alpha} \\ $$$$\:\:\:\:\:\:\:\:=\:\frac{\mathrm{3sin}\:\alpha^{\mathrm{3}} −\mathrm{2sin}\:\alpha^{\mathrm{2}} }{\alpha} \\ $$

Answered by mathmax by abdo last updated on 02/May/21

Φ(α)=∫_α ^α^2    ((sin(αx))/x)dx ⇒Φ(α) =_(αx=t)   ∫_α^2  ^α^3   ((sint)/(t/α))(dt/α)  =∫_α^2  ^α^3   ((sint)/t) dt ⇒Φ^′ (α)=(3α^2 )((sin(α^3 ))/α^3 ) −(2α)((sin(α^2 ))/α^2 )   =((3sin(α^3 ))/α)−((2sin(α^2 ))/α) =((3sin(α^3 )−2sin(α^2 ))/α)

$$\Phi\left(\alpha\right)=\int_{\alpha} ^{\alpha^{\mathrm{2}} } \:\:\frac{\mathrm{sin}\left(\alpha\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx}\:\Rightarrow\Phi\left(\alpha\right)\:=_{\alpha\mathrm{x}=\mathrm{t}} \:\:\int_{\alpha^{\mathrm{2}} } ^{\alpha^{\mathrm{3}} } \:\frac{\mathrm{sint}}{\frac{\mathrm{t}}{\alpha}}\frac{\mathrm{dt}}{\alpha} \\ $$$$=\int_{\alpha^{\mathrm{2}} } ^{\alpha^{\mathrm{3}} } \:\frac{\mathrm{sint}}{\mathrm{t}}\:\mathrm{dt}\:\Rightarrow\Phi^{'} \left(\alpha\right)=\left(\mathrm{3}\alpha^{\mathrm{2}} \right)\frac{\mathrm{sin}\left(\alpha^{\mathrm{3}} \right)}{\alpha^{\mathrm{3}} }\:−\left(\mathrm{2}\alpha\right)\frac{\mathrm{sin}\left(\alpha^{\mathrm{2}} \right)}{\alpha^{\mathrm{2}} }\: \\ $$$$=\frac{\mathrm{3sin}\left(\alpha^{\mathrm{3}} \right)}{\alpha}−\frac{\mathrm{2sin}\left(\alpha^{\mathrm{2}} \right)}{\alpha}\:=\frac{\mathrm{3sin}\left(\alpha^{\mathrm{3}} \right)−\mathrm{2sin}\left(\alpha^{\mathrm{2}} \right)}{\alpha} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com