Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 139814 by help last updated on 01/May/21

Answered by physicstutes last updated on 01/May/21

PV = nRT  and P increases at a rate of 0.10 atm/min and V is decreasing at   a rate of 0.15 L/min when n = 10   T = ((PV)/(nR)) ⇒ (dT/dt) = (1/(nR))(V_0 (dP/dt)+P_0 (dV/dt))  ⇒ (dT/dt) = (1/((10)(0.0281)))[(10)(0.10) +(8.0)(−0.15)]  corrections please if you spot any errors

$${PV}\:=\:{nRT} \\ $$$$\mathrm{and}\:{P}\:\mathrm{increases}\:\mathrm{at}\:\mathrm{a}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{0}.\mathrm{10}\:\mathrm{atm}/\mathrm{min}\:\mathrm{and}\:{V}\:\mathrm{is}\:\mathrm{decreasing}\:\mathrm{at} \\ $$$$\:\mathrm{a}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{0}.\mathrm{15}\:\mathrm{L}/\mathrm{min}\:\mathrm{when}\:{n}\:=\:\mathrm{10}\: \\ $$$${T}\:=\:\frac{{PV}}{{nR}}\:\Rightarrow\:\frac{{dT}}{{dt}}\:=\:\frac{\mathrm{1}}{{nR}}\left({V}_{\mathrm{0}} \frac{{dP}}{{dt}}+{P}_{\mathrm{0}} \frac{{dV}}{{dt}}\right) \\ $$$$\Rightarrow\:\frac{{dT}}{{dt}}\:=\:\frac{\mathrm{1}}{\left(\mathrm{10}\right)\left(\mathrm{0}.\mathrm{0281}\right)}\left[\left(\mathrm{10}\right)\left(\mathrm{0}.\mathrm{10}\right)\:+\left(\mathrm{8}.\mathrm{0}\right)\left(−\mathrm{0}.\mathrm{15}\right)\right] \\ $$$$\boldsymbol{{corrections}}\:\boldsymbol{{please}}\:\boldsymbol{{if}}\:\boldsymbol{{you}}\:\boldsymbol{{spot}}\:\boldsymbol{{any}}\:\boldsymbol{{errors}} \\ $$

Answered by Dwaipayan Shikari last updated on 01/May/21

PV=nRT  (dP/dt)V+(dV/dt)P=nR(dT/dt)  (dT/dt)=(1/(nR))((dP/dt)V+(dV/dt)P)  Put the values now

$${PV}={nRT} \\ $$$$\frac{{dP}}{{dt}}{V}+\frac{{dV}}{{dt}}{P}={nR}\frac{{dT}}{{dt}} \\ $$$$\frac{{dT}}{{dt}}=\frac{\mathrm{1}}{{nR}}\left(\frac{{dP}}{{dt}}{V}+\frac{{dV}}{{dt}}{P}\right) \\ $$$${Put}\:{the}\:{values}\:{now} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com