Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 139756 by cherokeesay last updated on 01/May/21

Answered by mr W last updated on 01/May/21

Commented by mr W last updated on 01/May/21

QB=(√(4^2 −2^2 ))=2(√3)  sin β=(2/4)=(1/2) ⇒β=30°  sin α=(1/3) ⇒cos α=((2(√2))/3) ⇒tan α=(1/(2(√2)))  AQ sin β=(PQ−AQ cos β)tan α  AQ=((PQ)/(cos β+((sin β)/(tan α))))=(6/(((√3)/2)+((2(√2))/2)))=((12)/( (√3)+2(√2)))  AB=2(√3)−((12)/( (√3)+2(√2)))=((2(11(√3)−12(√2)))/5)≈0.833

$${QB}=\sqrt{\mathrm{4}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{3}} \\ $$$$\mathrm{sin}\:\beta=\frac{\mathrm{2}}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\beta=\mathrm{30}° \\ $$$$\mathrm{sin}\:\alpha=\frac{\mathrm{1}}{\mathrm{3}}\:\Rightarrow\mathrm{cos}\:\alpha=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}\:\Rightarrow\mathrm{tan}\:\alpha=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$${AQ}\:\mathrm{sin}\:\beta=\left({PQ}−{AQ}\:\mathrm{cos}\:\beta\right)\mathrm{tan}\:\alpha \\ $$$${AQ}=\frac{{PQ}}{\mathrm{cos}\:\beta+\frac{\mathrm{sin}\:\beta}{\mathrm{tan}\:\alpha}}=\frac{\mathrm{6}}{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{2}}}=\frac{\mathrm{12}}{\:\sqrt{\mathrm{3}}+\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$${AB}=\mathrm{2}\sqrt{\mathrm{3}}−\frac{\mathrm{12}}{\:\sqrt{\mathrm{3}}+\mathrm{2}\sqrt{\mathrm{2}}}=\frac{\mathrm{2}\left(\mathrm{11}\sqrt{\mathrm{3}}−\mathrm{12}\sqrt{\mathrm{2}}\right)}{\mathrm{5}}\approx\mathrm{0}.\mathrm{833} \\ $$

Commented by cherokeesay last updated on 01/May/21

thank you mr W

$${thank}\:{you}\:{mr}\:{W} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com