Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 139456 by SOMEDAVONG last updated on 27/Apr/21

E=log_a (√(c/b^(log_(ab) c) ))+log_b (√(c/a^(log_(ab) c) ))

$$\mathrm{E}=\mathrm{log}_{\mathrm{a}} \sqrt{\frac{\mathrm{c}}{\mathrm{b}^{\mathrm{log}_{\mathrm{ab}} \mathrm{c}} }}+\mathrm{log}_{\mathrm{b}} \sqrt{\frac{\mathrm{c}}{\mathrm{a}^{\mathrm{log}_{\mathrm{ab}} \mathrm{c}} }} \\ $$

Answered by bemath last updated on 27/Apr/21

E = log _a (√(c/c^(log _(ab) b) )) + log _b (√(c/c^(log _(ab) a) ))  E=(1/2)[ log _a (c^(1−log _(ab) b) )+log _b (c^(1−log _(ab) a) )]  E=(1/2) [ log _a (c^(log _(ab) ((1/a))) )+ log _b (c^(log _(ab) ((1/b))) )]

$$\mathrm{E}\:=\:\mathrm{log}\:_{\mathrm{a}} \sqrt{\frac{\mathrm{c}}{\mathrm{c}^{\mathrm{log}\:_{\mathrm{ab}} \mathrm{b}} }}\:+\:\mathrm{log}\:_{\mathrm{b}} \sqrt{\frac{\mathrm{c}}{\mathrm{c}^{\mathrm{log}\:_{\mathrm{ab}} \mathrm{a}} }} \\ $$$$\mathrm{E}=\frac{\mathrm{1}}{\mathrm{2}}\left[\:\mathrm{log}\:_{\mathrm{a}} \left(\mathrm{c}^{\mathrm{1}−\mathrm{log}\:_{\mathrm{ab}} \mathrm{b}} \right)+\mathrm{log}\:_{\mathrm{b}} \left(\mathrm{c}^{\mathrm{1}−\mathrm{log}\:_{\mathrm{ab}} \mathrm{a}} \right)\right] \\ $$$$\mathrm{E}=\frac{\mathrm{1}}{\mathrm{2}}\:\left[\:\mathrm{log}\:_{\mathrm{a}} \left(\mathrm{c}^{\mathrm{log}\:_{\mathrm{ab}} \left(\frac{\mathrm{1}}{\mathrm{a}}\right)} \right)+\:\mathrm{log}\:_{\mathrm{b}} \left(\mathrm{c}^{\mathrm{log}\:_{\mathrm{ab}} \left(\frac{\mathrm{1}}{\mathrm{b}}\right)} \right)\right] \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com