Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 139419 by mathocean1 last updated on 26/Apr/21

ABCD is a rectangle such that   AD=2AB and its center is O.   H is the top of a pyramid which  has ABCD as base. All lateral  faces are isosceles triangles. planes  (HAB) and (HCD) are ⊥.  i have joined a graphic.  1. show that (OH)⊥(ABC).  2. show that OH=((√3)/2)AB

$${ABCD}\:{is}\:{a}\:{rectangle}\:{such}\:{that}\: \\ $$$${AD}=\mathrm{2}{AB}\:{and}\:{its}\:{center}\:{is}\:{O}.\: \\ $$$${H}\:{is}\:{the}\:{top}\:{of}\:{a}\:{pyramid}\:{which} \\ $$$${has}\:{ABCD}\:{as}\:{base}.\:{All}\:{lateral} \\ $$$${faces}\:{are}\:{isosceles}\:{triangles}.\:{planes} \\ $$$$\left({HAB}\right)\:{and}\:\left({HCD}\right)\:{are}\:\bot. \\ $$$${i}\:{have}\:{joined}\:{a}\:{graphic}. \\ $$$$\mathrm{1}.\:{show}\:{that}\:\left({OH}\right)\bot\left({ABC}\right). \\ $$$$\mathrm{2}.\:{show}\:{that}\:{OH}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{AB} \\ $$$$ \\ $$

Commented by mathocean1 last updated on 26/Apr/21

Commented by mr W last updated on 26/Apr/21

OH=AB≠((√3)/2)AB

$${OH}={AB}\neq\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{AB} \\ $$

Commented by mr W last updated on 27/Apr/21

Commented by mr W last updated on 27/Apr/21

Commented by mr W last updated on 27/Apr/21

HE⊥HF  OH=((EF)/2)=((AD)/2)=AB

$${HE}\bot{HF} \\ $$$${OH}=\frac{{EF}}{\mathrm{2}}=\frac{{AD}}{\mathrm{2}}={AB} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com