Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 139331 by 7770 last updated on 26/Apr/21

(√x)+(√y)=3  and  (√(x+5))+(√(y+3))=5  find x and y

$$\sqrt{\boldsymbol{{x}}}+\sqrt{\boldsymbol{{y}}}=\mathrm{3}\:\:\boldsymbol{{and}} \\ $$$$\sqrt{\boldsymbol{{x}}+\mathrm{5}}+\sqrt{\boldsymbol{{y}}+\mathrm{3}}=\mathrm{5} \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{x}}\:\boldsymbol{{and}}\:\boldsymbol{{y}} \\ $$

Answered by bemath last updated on 26/Apr/21

(1)x=9+y−6(√y)   (2)x+5=25+y+3−10(√(y+3))  ⇒14+y−6(√y) = 28+y−10(√(y+3))  ⇒14−6(√y) = 28−10(√(y+3))  ⇒6(√y) = 10(√(y+3))−14  ⇒3(√y) = 5(√(y+3))−7  ⇒9y+42(√y)+49 = 25(y+3)  42(√y) = 16y+26  ⇒21(√y) = 8y+13 , (√y)=u  ⇒8u^2 −21u+13=0  u = ((21+(√(441−32.13)))/(16))=((21+5)/(16))  u=((26)/(16)) ⇒y=(((26)/(16)))^2 =((676)/(256))

$$\left(\mathrm{1}\right)\mathrm{x}=\mathrm{9}+\mathrm{y}−\mathrm{6}\sqrt{\mathrm{y}}\: \\ $$$$\left(\mathrm{2}\right)\mathrm{x}+\mathrm{5}=\mathrm{25}+\mathrm{y}+\mathrm{3}−\mathrm{10}\sqrt{\mathrm{y}+\mathrm{3}} \\ $$$$\Rightarrow\mathrm{14}+\mathrm{y}−\mathrm{6}\sqrt{\mathrm{y}}\:=\:\mathrm{28}+\mathrm{y}−\mathrm{10}\sqrt{\mathrm{y}+\mathrm{3}} \\ $$$$\Rightarrow\mathrm{14}−\mathrm{6}\sqrt{\mathrm{y}}\:=\:\mathrm{28}−\mathrm{10}\sqrt{\mathrm{y}+\mathrm{3}} \\ $$$$\Rightarrow\mathrm{6}\sqrt{\mathrm{y}}\:=\:\mathrm{10}\sqrt{\mathrm{y}+\mathrm{3}}−\mathrm{14} \\ $$$$\Rightarrow\mathrm{3}\sqrt{\mathrm{y}}\:=\:\mathrm{5}\sqrt{\mathrm{y}+\mathrm{3}}−\mathrm{7} \\ $$$$\Rightarrow\mathrm{9y}+\mathrm{42}\sqrt{\mathrm{y}}+\mathrm{49}\:=\:\mathrm{25}\left(\mathrm{y}+\mathrm{3}\right) \\ $$$$\mathrm{42}\sqrt{\mathrm{y}}\:=\:\mathrm{16y}+\mathrm{26} \\ $$$$\Rightarrow\mathrm{21}\sqrt{\mathrm{y}}\:=\:\mathrm{8y}+\mathrm{13}\:,\:\sqrt{\mathrm{y}}=\mathrm{u} \\ $$$$\Rightarrow\mathrm{8u}^{\mathrm{2}} −\mathrm{21u}+\mathrm{13}=\mathrm{0} \\ $$$$\mathrm{u}\:=\:\frac{\mathrm{21}+\sqrt{\mathrm{441}−\mathrm{32}.\mathrm{13}}}{\mathrm{16}}=\frac{\mathrm{21}+\mathrm{5}}{\mathrm{16}} \\ $$$$\mathrm{u}=\frac{\mathrm{26}}{\mathrm{16}}\:\Rightarrow\mathrm{y}=\left(\frac{\mathrm{26}}{\mathrm{16}}\right)^{\mathrm{2}} =\frac{\mathrm{676}}{\mathrm{256}} \\ $$$$ \\ $$

Answered by MJS_new last updated on 26/Apr/21

x≥0∧y≥0  (1) y=(3−(√x))^2   (2) y=(5−(√(x+5)))^2 −3  ⇒  (3−(√x))^2 −(5−(√(x+5)))^2 +3=0  5(√(x+5))−3(√x)=9  squaring and transforming  17x+22=15(√x)(√(x+5))  squaring and transforming  x^2 −((377)/(64))x+((121)/(16))=0  x_1 =4∧x_2 =((121)/(64)) ⇒ y_1 =1∧y_2 =((169)/(64))

$${x}\geqslant\mathrm{0}\wedge{y}\geqslant\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\:{y}=\left(\mathrm{3}−\sqrt{{x}}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)\:{y}=\left(\mathrm{5}−\sqrt{{x}+\mathrm{5}}\right)^{\mathrm{2}} −\mathrm{3} \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{3}−\sqrt{{x}}\right)^{\mathrm{2}} −\left(\mathrm{5}−\sqrt{{x}+\mathrm{5}}\right)^{\mathrm{2}} +\mathrm{3}=\mathrm{0} \\ $$$$\mathrm{5}\sqrt{{x}+\mathrm{5}}−\mathrm{3}\sqrt{{x}}=\mathrm{9} \\ $$$$\mathrm{squaring}\:\mathrm{and}\:\mathrm{transforming} \\ $$$$\mathrm{17}{x}+\mathrm{22}=\mathrm{15}\sqrt{{x}}\sqrt{{x}+\mathrm{5}} \\ $$$$\mathrm{squaring}\:\mathrm{and}\:\mathrm{transforming} \\ $$$${x}^{\mathrm{2}} −\frac{\mathrm{377}}{\mathrm{64}}{x}+\frac{\mathrm{121}}{\mathrm{16}}=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =\mathrm{4}\wedge{x}_{\mathrm{2}} =\frac{\mathrm{121}}{\mathrm{64}}\:\Rightarrow\:{y}_{\mathrm{1}} =\mathrm{1}\wedge{y}_{\mathrm{2}} =\frac{\mathrm{169}}{\mathrm{64}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com