Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 139323 by snipers237 last updated on 25/Apr/21

 Let f define such as  f(1)=1,f(3)=3  ∀ n≥2  , f(2n)=f(n)   f(4n+1)=2f(2n+1)−f(n)  f(4n+3)=3f(2n+1)−2f(n)    1)Prove that ∀ n , f(n) is odd  2)Prove that if   f(a_n )=a_n  ,  then  a_n =2^n −1 or a_n =2^n +1

$$\:{Let}\:{f}\:{define}\:{such}\:{as}\:\:{f}\left(\mathrm{1}\right)=\mathrm{1},{f}\left(\mathrm{3}\right)=\mathrm{3} \\ $$$$\forall\:{n}\geqslant\mathrm{2}\:\:,\:{f}\left(\mathrm{2}{n}\right)={f}\left({n}\right)\: \\ $$$${f}\left(\mathrm{4}{n}+\mathrm{1}\right)=\mathrm{2}{f}\left(\mathrm{2}{n}+\mathrm{1}\right)−{f}\left({n}\right) \\ $$$${f}\left(\mathrm{4}{n}+\mathrm{3}\right)=\mathrm{3}{f}\left(\mathrm{2}{n}+\mathrm{1}\right)−\mathrm{2}{f}\left({n}\right) \\ $$$$ \\ $$$$\left.\mathrm{1}\right){Prove}\:{that}\:\forall\:{n}\:,\:{f}\left({n}\right)\:{is}\:{odd} \\ $$$$\left.\mathrm{2}\right){Prove}\:{that}\:{if}\:\:\:{f}\left({a}_{{n}} \right)={a}_{{n}} \:, \\ $$$${then}\:\:{a}_{{n}} =\mathrm{2}^{{n}} −\mathrm{1}\:{or}\:{a}_{{n}} =\mathrm{2}^{{n}} +\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com