Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 139319 by mathsuji last updated on 25/Apr/21

prove that are axactly 1729 positive  integer solutions to the below equation  4x^4 +3y^3 +2z^2 +t=4311

$${prove}\:{that}\:{are}\:{axactly}\:\mathrm{1729}\:{positive} \\ $$$${integer}\:{solutions}\:{to}\:{the}\:{below}\:{equation} \\ $$$$\mathrm{4}{x}^{\mathrm{4}} +\mathrm{3}{y}^{\mathrm{3}} +\mathrm{2}{z}^{\mathrm{2}} +{t}=\mathrm{4311} \\ $$

Commented by Rasheed.Sindhi last updated on 27/Apr/21

A Try  ^• x≥1  Maximum value of x:  4x^4 +3(1)^3 +2(1)^2 +(1)=4311  x^4 =((4311−6)/4)⇒x=5.7276..  x≤5  possible values of x:1,2,3,4,5  ^• y≥1  Maximum value of y:  4(1)^4 +3y^3 +2(1)^2 +(1)=4311        y^3 =((4311−4−2−1)/3)      y=11.278      y≤11  possible values of y:1,2,3,...,11  ^• z≥1     Maximum value of z:     4(1)^4 +3(1)^3 +2z^2 +(1)=4311       z^2 =((4311−4−3−1)/2)       z=46.384  z≤46  possible values of z:1,2,3,...,46  ^• t≥1     Maximum value of t:    4(1)^4 +3(1)^3 +2(1)^2 +t=4311       t=4311−4−3−2=4302   t≤4302  possible values of t:1,2,3,...,4302  Continue

$${A}\:{Try} \\ $$$$\:^{\bullet} {x}\geqslant\mathrm{1} \\ $$$${Maximum}\:{value}\:{of}\:{x}: \\ $$$$\mathrm{4}{x}^{\mathrm{4}} +\mathrm{3}\left(\mathrm{1}\right)^{\mathrm{3}} +\mathrm{2}\left(\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{1}\right)=\mathrm{4311} \\ $$$${x}^{\mathrm{4}} =\frac{\mathrm{4311}−\mathrm{6}}{\mathrm{4}}\Rightarrow{x}=\mathrm{5}.\mathrm{7276}.. \\ $$$${x}\leqslant\mathrm{5} \\ $$$${possible}\:{values}\:{of}\:{x}:\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5} \\ $$$$\:^{\bullet} {y}\geqslant\mathrm{1} \\ $$$${Maximum}\:{value}\:{of}\:{y}: \\ $$$$\mathrm{4}\left(\mathrm{1}\right)^{\mathrm{4}} +\mathrm{3}{y}^{\mathrm{3}} +\mathrm{2}\left(\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{1}\right)=\mathrm{4311} \\ $$$$\:\:\:\:\:\:{y}^{\mathrm{3}} =\frac{\mathrm{4311}−\mathrm{4}−\mathrm{2}−\mathrm{1}}{\mathrm{3}} \\ $$$$\:\:\:\:{y}=\mathrm{11}.\mathrm{278} \\ $$$$\:\:\:\:{y}\leqslant\mathrm{11} \\ $$$${possible}\:{values}\:{of}\:{y}:\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{11} \\ $$$$\:^{\bullet} {z}\geqslant\mathrm{1} \\ $$$$\:\:\:{Maximum}\:{value}\:{of}\:{z}: \\ $$$$\:\:\:\mathrm{4}\left(\mathrm{1}\right)^{\mathrm{4}} +\mathrm{3}\left(\mathrm{1}\right)^{\mathrm{3}} +\mathrm{2}{z}^{\mathrm{2}} +\left(\mathrm{1}\right)=\mathrm{4311} \\ $$$$\:\:\:\:\:{z}^{\mathrm{2}} =\frac{\mathrm{4311}−\mathrm{4}−\mathrm{3}−\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\:\:{z}=\mathrm{46}.\mathrm{384} \\ $$$${z}\leqslant\mathrm{46} \\ $$$${possible}\:{values}\:{of}\:{z}:\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{46} \\ $$$$\:^{\bullet} {t}\geqslant\mathrm{1} \\ $$$$\:\:\:{Maximum}\:{value}\:{of}\:{t}: \\ $$$$\:\:\mathrm{4}\left(\mathrm{1}\right)^{\mathrm{4}} +\mathrm{3}\left(\mathrm{1}\right)^{\mathrm{3}} +\mathrm{2}\left(\mathrm{1}\right)^{\mathrm{2}} +{t}=\mathrm{4311} \\ $$$$\:\:\:\:\:{t}=\mathrm{4311}−\mathrm{4}−\mathrm{3}−\mathrm{2}=\mathrm{4302} \\ $$$$\:{t}\leqslant\mathrm{4302} \\ $$$${possible}\:{values}\:{of}\:{t}:\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{4302} \\ $$$${Continue} \\ $$$$ \\ $$

Commented by mathsuji last updated on 28/Apr/21

cool thankyou sir

$${cool}\:{thankyou}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com