Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 139105 by mnjuly1970 last updated on 22/Apr/21

Answered by bramlexs22 last updated on 22/Apr/21

(b/(sin θ))=(a/(sin 2θ)) ⇒ b=(a/(2cos θ)) ; cos θ=(a/(2b))  ∡C =γ= 180°−3θ  c^2  = a^2 +b^2 −2ab cos γ  (•)cos γ=−cos 3θ  c=(√(a^2 +b^2 +2abcos 3θ))  cos 3θ=cos 2θcos θ−sin 2θsin θ  =cos θ(2cos^2 θ−1)−2cos θ(1−cos^2 θ)  =4cos^3 θ−3cos θ  =4((a^3 /(8b^3 )))−3((a/(2b)))=(a^3 /(2b^3 ))−((3ab^2 )/(2b^3 ))=((a^3 −3ab^2 )/(2b^3 ))  c =(√(a^2 +b^2 +2ab(((a^3 −3ab^2 )/(2b^3 )))))  =(√(a^2 +b^2 +((a(a^3 −3ab^2 ))/b^2 )))  =((√(a^2 b^2 +b^4 +a^4 −3a^2 b^2 ))/b)  =((√(a^4 +b^4 −2a^2 b^2 ))/b)=((a^2 −b^2 )/b)

$$\frac{\mathrm{b}}{\mathrm{sin}\:\theta}=\frac{\mathrm{a}}{\mathrm{sin}\:\mathrm{2}\theta}\:\Rightarrow\:\mathrm{b}=\frac{\mathrm{a}}{\mathrm{2cos}\:\theta}\:;\:\mathrm{cos}\:\theta=\frac{\mathrm{a}}{\mathrm{2b}} \\ $$$$\measuredangle\mathrm{C}\:=\gamma=\:\mathrm{180}°−\mathrm{3}\theta \\ $$$$\mathrm{c}^{\mathrm{2}} \:=\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} −\mathrm{2ab}\:\mathrm{cos}\:\gamma \\ $$$$\left(\bullet\right)\mathrm{cos}\:\gamma=−\mathrm{cos}\:\mathrm{3}\theta \\ $$$$\mathrm{c}=\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{2abcos}\:\mathrm{3}\theta} \\ $$$$\mathrm{cos}\:\mathrm{3}\theta=\mathrm{cos}\:\mathrm{2}\theta\mathrm{cos}\:\theta−\mathrm{sin}\:\mathrm{2}\theta\mathrm{sin}\:\theta \\ $$$$=\mathrm{cos}\:\theta\left(\mathrm{2cos}\:^{\mathrm{2}} \theta−\mathrm{1}\right)−\mathrm{2cos}\:\theta\left(\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \theta\right) \\ $$$$=\mathrm{4cos}\:^{\mathrm{3}} \theta−\mathrm{3cos}\:\theta \\ $$$$=\mathrm{4}\left(\frac{\mathrm{a}^{\mathrm{3}} }{\mathrm{8b}^{\mathrm{3}} }\right)−\mathrm{3}\left(\frac{\mathrm{a}}{\mathrm{2b}}\right)=\frac{\mathrm{a}^{\mathrm{3}} }{\mathrm{2b}^{\mathrm{3}} }−\frac{\mathrm{3ab}^{\mathrm{2}} }{\mathrm{2b}^{\mathrm{3}} }=\frac{\mathrm{a}^{\mathrm{3}} −\mathrm{3ab}^{\mathrm{2}} }{\mathrm{2b}^{\mathrm{3}} } \\ $$$$\mathrm{c}\:=\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{2ab}\left(\frac{\mathrm{a}^{\mathrm{3}} −\mathrm{3ab}^{\mathrm{2}} }{\mathrm{2b}^{\mathrm{3}} }\right)} \\ $$$$=\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\frac{\mathrm{a}\left(\mathrm{a}^{\mathrm{3}} −\mathrm{3ab}^{\mathrm{2}} \right)}{\mathrm{b}^{\mathrm{2}} }} \\ $$$$=\frac{\sqrt{\mathrm{a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} +\mathrm{b}^{\mathrm{4}} +\mathrm{a}^{\mathrm{4}} −\mathrm{3a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} }}{\mathrm{b}} \\ $$$$=\frac{\sqrt{\mathrm{a}^{\mathrm{4}} +\mathrm{b}^{\mathrm{4}} −\mathrm{2a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} }}{\mathrm{b}}=\frac{\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} }{\mathrm{b}} \\ $$

Commented by mnjuly1970 last updated on 22/Apr/21

thanks alot master...

$${thanks}\:{alot}\:{master}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com