Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 138989 by metamorfose last updated on 20/Apr/21

find the integers x , y , z , n that  satisfy : 2^n =x!+y!+z!

$${find}\:{the}\:{integers}\:{x}\:,\:{y}\:,\:{z}\:,\:{n}\:{that} \\ $$$${satisfy}\::\:\mathrm{2}^{{n}} ={x}!+{y}!+{z}! \\ $$

Answered by mindispower last updated on 21/Apr/21

let m=min(x,y,z),if m≥3⇒  x!+y!+z!≡0[3]⇔2^n ≡0[3] impossib since  2,3 are coprime  ⇒m∈{0,1,2} by symetrie of x!+y!+z!  let m=x,x≤y≤z  x=0,1⇒2^n −1=z!+y!≥2⇒n≥2  z!+y!≡1[2]⇒y={0,1}  ⇒2^n −2=z!⇒2(2^(n−1) −1)=z!,we see z≥2  since 2∣2(2^(n−1) −1)  the power of 2 in the 2(2^(n−1) −1)is one since  2^(n−1) −1≡1[2]⇒z<4⇒z∈{2,3}  z=2⇒2^n −2=2⇒n=2  z=3⇒2^n =8⇒n=3  case 2 x=2  ⇒2^n −2=y!+z!⇒2(2^(n−1) −1)=y!+z!,2≤y<4  because power of 2 in 2(2^(n−1) −1)=1  and y≤z if y≥4⇒4∣(y!+z!) ⇒power of 2 in   y!+z! is at less 2 impossibl  if y=2  ⇒2^2 (2^(n−2) −1)=z!⇒no solution  y=3⇒2(2^(n−1) −1)=6+z!  ⇒2^3 (2^(n−3) −1)=z!⇒z={4,5}  z=4⇒24=2^n −8⇒n=5  z=5⇒128=2^n ⇒n=7,ander permutation   of x,y,z

$${let}\:{m}={min}\left({x},{y},{z}\right),{if}\:{m}\geqslant\mathrm{3}\Rightarrow \\ $$$${x}!+{y}!+{z}!\equiv\mathrm{0}\left[\mathrm{3}\right]\Leftrightarrow\mathrm{2}^{{n}} \equiv\mathrm{0}\left[\mathrm{3}\right]\:{impossib}\:{since} \\ $$$$\mathrm{2},\mathrm{3}\:{are}\:{coprime} \\ $$$$\Rightarrow{m}\in\left\{\mathrm{0},\mathrm{1},\mathrm{2}\right\}\:{by}\:{symetrie}\:{of}\:{x}!+{y}!+{z}! \\ $$$${let}\:{m}={x},{x}\leqslant{y}\leqslant{z} \\ $$$${x}=\mathrm{0},\mathrm{1}\Rightarrow\mathrm{2}^{{n}} −\mathrm{1}={z}!+{y}!\geqslant\mathrm{2}\Rightarrow{n}\geqslant\mathrm{2} \\ $$$${z}!+{y}!\equiv\mathrm{1}\left[\mathrm{2}\right]\Rightarrow{y}=\left\{\mathrm{0},\mathrm{1}\right\} \\ $$$$\Rightarrow\mathrm{2}^{{n}} −\mathrm{2}={z}!\Rightarrow\mathrm{2}\left(\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{1}\right)={z}!,{we}\:{see}\:{z}\geqslant\mathrm{2} \\ $$$${since}\:\mathrm{2}\mid\mathrm{2}\left(\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{1}\right) \\ $$$${the}\:{power}\:{of}\:\mathrm{2}\:{in}\:{the}\:\mathrm{2}\left(\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{1}\right){is}\:{one}\:{since} \\ $$$$\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{1}\equiv\mathrm{1}\left[\mathrm{2}\right]\Rightarrow{z}<\mathrm{4}\Rightarrow{z}\in\left\{\mathrm{2},\mathrm{3}\right\} \\ $$$${z}=\mathrm{2}\Rightarrow\mathrm{2}^{{n}} −\mathrm{2}=\mathrm{2}\Rightarrow{n}=\mathrm{2} \\ $$$${z}=\mathrm{3}\Rightarrow\mathrm{2}^{{n}} =\mathrm{8}\Rightarrow{n}=\mathrm{3} \\ $$$${case}\:\mathrm{2}\:{x}=\mathrm{2} \\ $$$$\Rightarrow\mathrm{2}^{{n}} −\mathrm{2}={y}!+{z}!\Rightarrow\mathrm{2}\left(\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{1}\right)={y}!+{z}!,\mathrm{2}\leqslant{y}<\mathrm{4} \\ $$$${because}\:{power}\:{of}\:\mathrm{2}\:{in}\:\mathrm{2}\left(\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{1}\right)=\mathrm{1} \\ $$$${and}\:{y}\leqslant{z}\:{if}\:{y}\geqslant\mathrm{4}\Rightarrow\mathrm{4}\mid\left({y}!+{z}!\right)\:\Rightarrow{power}\:{of}\:\mathrm{2}\:{in}\: \\ $$$${y}!+{z}!\:{is}\:{at}\:{less}\:\mathrm{2}\:{impossibl} \\ $$$${if}\:{y}=\mathrm{2} \\ $$$$\Rightarrow\mathrm{2}^{\mathrm{2}} \left(\mathrm{2}^{{n}−\mathrm{2}} −\mathrm{1}\right)=\boldsymbol{{z}}!\Rightarrow{no}\:{solution} \\ $$$${y}=\mathrm{3}\Rightarrow\mathrm{2}\left(\mathrm{2}^{{n}−\mathrm{1}} −\mathrm{1}\right)=\mathrm{6}+{z}! \\ $$$$\Rightarrow\mathrm{2}^{\mathrm{3}} \left(\mathrm{2}^{{n}−\mathrm{3}} −\mathrm{1}\right)={z}!\Rightarrow{z}=\left\{\mathrm{4},\mathrm{5}\right\} \\ $$$${z}=\mathrm{4}\Rightarrow\mathrm{24}=\mathrm{2}^{{n}} −\mathrm{8}\Rightarrow{n}=\mathrm{5} \\ $$$${z}=\mathrm{5}\Rightarrow\mathrm{128}=\mathrm{2}^{{n}} \Rightarrow{n}=\mathrm{7},{ander}\:{permutation}\: \\ $$$${of}\:{x},{y},{z} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by metamorfose last updated on 21/Apr/21

thnx sir

$${thnx}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com