Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 138872 by peter frank last updated on 19/Apr/21

Answered by bramlexs22 last updated on 19/Apr/21

p(x)=x^3 +(A−7)x^2 +Ax−8  p(x)=0⇒x^3 +(A−7)x^2 +Ax−8=0  let  { ((x_1 =(a/r))),((x_2 =a)),((x_3 =ar)) :} by Vieta′s rule  ⇒x_1 .x_2 .x_3  = 8 ; a^3 =8 ; a=2  ⇒x_2 =2⇒p(2)=0  ⇒8+(A−7).4+2A−8=0  ⇒6A= 28 ; A=((14)/3)  p(x)=x^3 −(7/3)x^2 +((14)/3)x−8

$$\mathrm{p}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{3}} +\left(\mathrm{A}−\mathrm{7}\right)\mathrm{x}^{\mathrm{2}} +\mathrm{Ax}−\mathrm{8} \\ $$$$\mathrm{p}\left(\mathrm{x}\right)=\mathrm{0}\Rightarrow\mathrm{x}^{\mathrm{3}} +\left(\mathrm{A}−\mathrm{7}\right)\mathrm{x}^{\mathrm{2}} +\mathrm{Ax}−\mathrm{8}=\mathrm{0} \\ $$$$\mathrm{let}\:\begin{cases}{\mathrm{x}_{\mathrm{1}} =\frac{\mathrm{a}}{\mathrm{r}}}\\{\mathrm{x}_{\mathrm{2}} =\mathrm{a}}\\{\mathrm{x}_{\mathrm{3}} =\mathrm{ar}}\end{cases}\:\mathrm{by}\:\mathrm{Vieta}'\mathrm{s}\:\mathrm{rule} \\ $$$$\Rightarrow\mathrm{x}_{\mathrm{1}} .\mathrm{x}_{\mathrm{2}} .\mathrm{x}_{\mathrm{3}} \:=\:\mathrm{8}\:;\:\mathrm{a}^{\mathrm{3}} =\mathrm{8}\:;\:\mathrm{a}=\mathrm{2} \\ $$$$\Rightarrow\mathrm{x}_{\mathrm{2}} =\mathrm{2}\Rightarrow\mathrm{p}\left(\mathrm{2}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{8}+\left(\mathrm{A}−\mathrm{7}\right).\mathrm{4}+\mathrm{2A}−\mathrm{8}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{6A}=\:\mathrm{28}\:;\:\mathrm{A}=\frac{\mathrm{14}}{\mathrm{3}} \\ $$$$\mathrm{p}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{3}} −\frac{\mathrm{7}}{\mathrm{3}}\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{14}}{\mathrm{3}}\mathrm{x}−\mathrm{8}\: \\ $$

Commented by peter frank last updated on 19/Apr/21

thank you

$${thank}\:{you} \\ $$

Answered by Rasheed.Sindhi last updated on 21/Apr/21

AnOther Way      P(x)=x^3 +(A−7)x^2 +Ax−8...(i)  Let a , ar , ar^2  are roots.     P(x)=(x−a)(x−ar)(x−ar^2 )    =x^3 −a(r^2 +r+1)x^2 +a^2 (r^2 +r+1 )x−a^3 ...(ii)  Comparing (i) & (ii)  ^• −a(r^2 +r+1)=A−7...(iii)  ^• a^2 (r^2 +r+1)=A...(iv)  ^• a^3 =8⇒a=2...............(v)  (iv)/(iii): −a=(A/(A−7))=−2             A+2A=14              A=((14)/3)   (iii):  a^2 (r^2 +r+1)=A                   ⇒2^2 (r^2 +r+1)=((14)/3)                        6r^2 +6r−1=0          r=((−6±(√(36+24)))/(12))=((−3±(√(15)))/6)  P(x)=x^3 +(((14)/3)−7)x^2 +((14)/3)x−8   •P(x)=x^3 −(7/3)x^2 +((14)/3)x−8  •Roots are: a,ar,ar^2         2,2(((−3±(√(15)))/6)),2(((−3±(√(15)))/6))^2

$$\boldsymbol{{AnOther}}\:\boldsymbol{{Way}} \\ $$$$\:\:\:\:{P}\left({x}\right)={x}^{\mathrm{3}} +\left({A}−\mathrm{7}\right){x}^{\mathrm{2}} +{Ax}−\mathrm{8}...\left({i}\right) \\ $$$${Let}\:{a}\:,\:{ar}\:,\:{ar}^{\mathrm{2}} \:{are}\:{roots}. \\ $$$$\:\:\:{P}\left({x}\right)=\left({x}−{a}\right)\left({x}−{ar}\right)\left({x}−{ar}^{\mathrm{2}} \right) \\ $$$$\:\:={x}^{\mathrm{3}} −{a}\left({r}^{\mathrm{2}} +{r}+\mathrm{1}\right){x}^{\mathrm{2}} +{a}^{\mathrm{2}} \left({r}^{\mathrm{2}} +{r}+\mathrm{1}\:\right){x}−{a}^{\mathrm{3}} ...\left({ii}\right) \\ $$$${Comparing}\:\left({i}\right)\:\&\:\left({ii}\right) \\ $$$$\:^{\bullet} −{a}\left({r}^{\mathrm{2}} +{r}+\mathrm{1}\right)={A}−\mathrm{7}...\left({iii}\right) \\ $$$$\:^{\bullet} {a}^{\mathrm{2}} \left({r}^{\mathrm{2}} +{r}+\mathrm{1}\right)={A}...\left({iv}\right) \\ $$$$\:^{\bullet} {a}^{\mathrm{3}} =\mathrm{8}\Rightarrow{a}=\mathrm{2}...............\left({v}\right) \\ $$$$\left({iv}\right)/\left({iii}\right):\:−{a}=\frac{{A}}{{A}−\mathrm{7}}=−\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{A}+\mathrm{2}{A}=\mathrm{14} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{A}=\frac{\mathrm{14}}{\mathrm{3}} \\ $$$$\:\left({iii}\right):\:\:{a}^{\mathrm{2}} \left({r}^{\mathrm{2}} +{r}+\mathrm{1}\right)={A} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{2}^{\mathrm{2}} \left({r}^{\mathrm{2}} +{r}+\mathrm{1}\right)=\frac{\mathrm{14}}{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{6}{r}^{\mathrm{2}} +\mathrm{6}{r}−\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:{r}=\frac{−\mathrm{6}\pm\sqrt{\mathrm{36}+\mathrm{24}}}{\mathrm{12}}=\frac{−\mathrm{3}\pm\sqrt{\mathrm{15}}}{\mathrm{6}} \\ $$$${P}\left({x}\right)={x}^{\mathrm{3}} +\left(\frac{\mathrm{14}}{\mathrm{3}}−\mathrm{7}\right){x}^{\mathrm{2}} +\frac{\mathrm{14}}{\mathrm{3}}{x}−\mathrm{8} \\ $$$$\:\bullet{P}\left({x}\right)={x}^{\mathrm{3}} −\frac{\mathrm{7}}{\mathrm{3}}{x}^{\mathrm{2}} +\frac{\mathrm{14}}{\mathrm{3}}{x}−\mathrm{8} \\ $$$$\bullet{Roots}\:{are}:\:{a},{ar},{ar}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\mathrm{2},\mathrm{2}\left(\frac{−\mathrm{3}\pm\sqrt{\mathrm{15}}}{\mathrm{6}}\right),\mathrm{2}\left(\frac{−\mathrm{3}\pm\sqrt{\mathrm{15}}}{\mathrm{6}}\right)^{\mathrm{2}} \\ $$

Commented by peter frank last updated on 12/May/21

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com