Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 138748 by physicstutes last updated on 17/Apr/21

A committee of 3 members is to be formed from 8 members.  Find the number of committees that can be formed if two particular  club members cannot both be in a committee

$$\mathrm{A}\:\mathrm{committee}\:\mathrm{of}\:\mathrm{3}\:\mathrm{members}\:\mathrm{is}\:\mathrm{to}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{from}\:\mathrm{8}\:\mathrm{members}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{committees}\:\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{if}\:\mathrm{two}\:\mathrm{particular} \\ $$$$\mathrm{club}\:\mathrm{members}\:\mathrm{cannot}\:\mathrm{both}\:\mathrm{be}\:\mathrm{in}\:\mathrm{a}\:\mathrm{committee} \\ $$

Answered by mr W last updated on 17/Apr/21

C_3 ^8 −C_1 ^6 =50

$${C}_{\mathrm{3}} ^{\mathrm{8}} −{C}_{\mathrm{1}} ^{\mathrm{6}} =\mathrm{50} \\ $$

Commented by physicstutes last updated on 17/Apr/21

sir please why the ^6 C_1  part?

$$\mathrm{sir}\:\mathrm{please}\:\mathrm{why}\:\mathrm{the}\:\:^{\mathrm{6}} \mathrm{C}_{\mathrm{1}} \:\mathrm{part}? \\ $$

Commented by mr W last updated on 17/Apr/21

to select 3 from 8 persons there are  totally C_3 ^8  ways.  if two particular persons are in the  committee, to select the third person  from the rest 6 persons, there are  C_1 ^6  ways.  since these two particular persons  should not be both in the committee,  so we have only C_3 ^8 −C_1 ^6  ways.

$${to}\:{select}\:\mathrm{3}\:{from}\:\mathrm{8}\:{persons}\:{there}\:{are} \\ $$$${totally}\:{C}_{\mathrm{3}} ^{\mathrm{8}} \:{ways}. \\ $$$${if}\:{two}\:{particular}\:{persons}\:{are}\:{in}\:{the} \\ $$$${committee},\:{to}\:{select}\:{the}\:{third}\:{person} \\ $$$${from}\:{the}\:{rest}\:\mathrm{6}\:{persons},\:{there}\:{are} \\ $$$${C}_{\mathrm{1}} ^{\mathrm{6}} \:{ways}. \\ $$$${since}\:{these}\:{two}\:{particular}\:{persons} \\ $$$${should}\:{not}\:{be}\:{both}\:{in}\:{the}\:{committee}, \\ $$$${so}\:{we}\:{have}\:{only}\:{C}_{\mathrm{3}} ^{\mathrm{8}} −{C}_{\mathrm{1}} ^{\mathrm{6}} \:{ways}. \\ $$

Commented by mr W last updated on 17/Apr/21

certainly you can also solve like this:  say the two particular persons are  A and B.  1) both A and B are not in committee  we select all three members from the  other 6 persons, there are C_3 ^6  ways.  2) A is in committe  we select other two members from  the other 6 persons, there are C_2 ^6  ways.  3) B is in committe  we select other two members from  the other 6 persons, there are C_2 ^6  ways.  totally: there are  C_3 ^6 +2×C_2 ^6 =50 ways.

$${certainly}\:{you}\:{can}\:{also}\:{solve}\:{like}\:{this}: \\ $$$${say}\:{the}\:{two}\:{particular}\:{persons}\:{are} \\ $$$${A}\:{and}\:{B}. \\ $$$$\left.\mathrm{1}\right)\:{both}\:{A}\:{and}\:{B}\:{are}\:{not}\:{in}\:{committee} \\ $$$${we}\:{select}\:{all}\:{three}\:{members}\:{from}\:{the} \\ $$$${other}\:\mathrm{6}\:{persons},\:{there}\:{are}\:{C}_{\mathrm{3}} ^{\mathrm{6}} \:{ways}. \\ $$$$\left.\mathrm{2}\right)\:{A}\:{is}\:{in}\:{committe} \\ $$$${we}\:{select}\:{other}\:{two}\:{members}\:{from} \\ $$$${the}\:{other}\:\mathrm{6}\:{persons},\:{there}\:{are}\:{C}_{\mathrm{2}} ^{\mathrm{6}} \:{ways}. \\ $$$$\left.\mathrm{3}\right)\:{B}\:{is}\:{in}\:{committe} \\ $$$${we}\:{select}\:{other}\:{two}\:{members}\:{from} \\ $$$${the}\:{other}\:\mathrm{6}\:{persons},\:{there}\:{are}\:{C}_{\mathrm{2}} ^{\mathrm{6}} \:{ways}. \\ $$$${totally}:\:{there}\:{are} \\ $$$${C}_{\mathrm{3}} ^{\mathrm{6}} +\mathrm{2}×{C}_{\mathrm{2}} ^{\mathrm{6}} =\mathrm{50}\:{ways}. \\ $$

Commented by physicstutes last updated on 18/Apr/21

that was brilliant sir. Thanks

$$\mathrm{that}\:\mathrm{was}\:\mathrm{brilliant}\:\mathrm{sir}.\:\mathrm{Thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com