Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 138725 by mathsuji last updated on 17/Apr/21

Solve for real numbers  ((sin(sinx))/(sinx)) + ((cos(cosx))/(cosx)) = 1

$${Solve}\:{for}\:{real}\:{numbers} \\ $$$$\frac{{sin}\left({sinx}\right)}{{sinx}}\:+\:\frac{{cos}\left({cosx}\right)}{{cosx}}\:=\:\mathrm{1} \\ $$

Answered by mr W last updated on 18/Apr/21

t=sin x  cos x=±(√(1−t^2 ))  −1≤t≤1  f(t)=((sin t)/t)+((cos (√(1−t^2 )))/( (√(1−t^2 ))))≥f(0)=1+cos 1>1  ⇒no solution for f(t)=1  g(t)=((sin t)/t)−((cos (√(1−t^2 )))/( (√(1−t^2 ))))≤g(0)=1−cos 1<1=  ⇒no solution for g(t)=1    ⇒no solution for  ((sin(sinx))/(sinx)) + ((cos(cosx))/(cosx)) = 1!    ((sin(sinx))/(sinx)) + ((cos(cosx))/(cosx)) = a has roots  only if a≥1+cos 1 or a≤1−cos 1

$${t}=\mathrm{sin}\:{x} \\ $$$$\mathrm{cos}\:{x}=\pm\sqrt{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$$$−\mathrm{1}\leqslant{t}\leqslant\mathrm{1} \\ $$$${f}\left({t}\right)=\frac{\mathrm{sin}\:{t}}{{t}}+\frac{\mathrm{cos}\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\geqslant{f}\left(\mathrm{0}\right)=\mathrm{1}+\mathrm{cos}\:\mathrm{1}>\mathrm{1} \\ $$$$\Rightarrow{no}\:{solution}\:{for}\:{f}\left({t}\right)=\mathrm{1} \\ $$$${g}\left({t}\right)=\frac{\mathrm{sin}\:{t}}{{t}}−\frac{\mathrm{cos}\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}\leqslant{g}\left(\mathrm{0}\right)=\mathrm{1}−\mathrm{cos}\:\mathrm{1}<\mathrm{1}= \\ $$$$\Rightarrow{no}\:{solution}\:{for}\:{g}\left({t}\right)=\mathrm{1} \\ $$$$ \\ $$$$\Rightarrow{no}\:{solution}\:{for} \\ $$$$\frac{{sin}\left({sinx}\right)}{{sinx}}\:+\:\frac{{cos}\left({cosx}\right)}{{cosx}}\:=\:\mathrm{1}! \\ $$$$ \\ $$$$\frac{{sin}\left({sinx}\right)}{{sinx}}\:+\:\frac{{cos}\left({cosx}\right)}{{cosx}}\:=\:{a}\:{has}\:{roots} \\ $$$${only}\:{if}\:{a}\geqslant\mathrm{1}+\mathrm{cos}\:\mathrm{1}\:{or}\:{a}\leqslant\mathrm{1}−\mathrm{cos}\:\mathrm{1} \\ $$

Commented by mathsuji last updated on 20/Apr/21

THANKS SIR

$${THANKS}\:{SIR} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com