Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 13872 by tawa tawa last updated on 24/May/17

An alpha particle of mass  6.68 × 10^(−27)  kg and charge  q = +2, are   accelerated from rest through the potential difference of  1kV. it then enters  a magnetic field B = 0.2 T perpendicular to their direction of motion.  Calculate the radius of their path.

$$\mathrm{An}\:\mathrm{alpha}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:\:\mathrm{6}.\mathrm{68}\:×\:\mathrm{10}^{−\mathrm{27}} \:\mathrm{kg}\:\mathrm{and}\:\mathrm{charge}\:\:\mathrm{q}\:=\:+\mathrm{2},\:\mathrm{are}\: \\ $$$$\mathrm{accelerated}\:\mathrm{from}\:\mathrm{rest}\:\mathrm{through}\:\mathrm{the}\:\mathrm{potential}\:\mathrm{difference}\:\mathrm{of}\:\:\mathrm{1kV}.\:\mathrm{it}\:\mathrm{then}\:\mathrm{enters} \\ $$$$\mathrm{a}\:\mathrm{magnetic}\:\mathrm{field}\:\mathrm{B}\:=\:\mathrm{0}.\mathrm{2}\:\mathrm{T}\:\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{their}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{motion}. \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{their}\:\mathrm{path}. \\ $$

Answered by ajfour last updated on 24/May/17

qV=(1/2)mv^2  ; alpha particle gets    accelerated to speed v   ⇒ mv=(√(2mqV))  when it enters region of magnetic  field B, force it experiences is    F_B =qvBsin θ ;           =qvB      (θ=(π/2)  as B^�  is⊥ to v^�  )   in such a case the motion is circular  F_B =qvB=((mv^2 )/r)      (Force=mass×acc.)  r=((mv)/(qB))= ((√(2mqV))/(qB))=(√(((2mV)/(qB^2 )) ))    =(√((2×6.68×10^(−27) ×1000)/(2×1.6×10^(−19) ×4×10^(−2) ))) m    =(√(((6.68)/(6.4))×10^(−3) )) m=(√((668)/(64)))×10^(−2) m    =(√(10+(7/(16)))) cm    =(√(10.438)) cm ≈ 3.23 cm .

$${qV}=\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} \:;\:{alpha}\:{particle}\:{gets} \\ $$$$\:\:{accelerated}\:{to}\:{speed}\:\boldsymbol{{v}}\: \\ $$$$\Rightarrow\:{mv}=\sqrt{\mathrm{2}{mqV}} \\ $$$${when}\:{it}\:{enters}\:{region}\:{of}\:{magnetic} \\ $$$${field}\:{B},\:{force}\:{it}\:{experiences}\:{is} \\ $$$$\:\:{F}_{{B}} ={qvB}\mathrm{sin}\:\theta\:;\: \\ $$$$\:\:\:\:\:\:\:\:={qvB}\:\:\:\:\:\:\left(\theta=\frac{\pi}{\mathrm{2}}\:\:{as}\:\bar {{B}}\:{is}\bot\:{to}\:\bar {\boldsymbol{{v}}}\:\right) \\ $$$$\:{in}\:{such}\:{a}\:{case}\:{the}\:{motion}\:{is}\:{circular} \\ $$$${F}_{{B}} ={qvB}=\frac{{mv}^{\mathrm{2}} }{{r}}\:\:\:\:\:\:\left({Force}={mass}×{acc}.\right) \\ $$$${r}=\frac{{mv}}{{qB}}=\:\frac{\sqrt{\mathrm{2}{mqV}}}{{qB}}=\sqrt{\frac{\mathrm{2}{mV}}{{qB}^{\mathrm{2}} }\:} \\ $$$$\:\:=\sqrt{\frac{\mathrm{2}×\mathrm{6}.\mathrm{68}×\mathrm{10}^{−\mathrm{27}} ×\mathrm{1000}}{\mathrm{2}×\mathrm{1}.\mathrm{6}×\mathrm{10}^{−\mathrm{19}} ×\mathrm{4}×\mathrm{10}^{−\mathrm{2}} }}\:{m} \\ $$$$\:\:=\sqrt{\frac{\mathrm{6}.\mathrm{68}}{\mathrm{6}.\mathrm{4}}×\mathrm{10}^{−\mathrm{3}} }\:{m}=\sqrt{\frac{\mathrm{668}}{\mathrm{64}}}×\mathrm{10}^{−\mathrm{2}} {m} \\ $$$$\:\:=\sqrt{\mathrm{10}+\frac{\mathrm{7}}{\mathrm{16}}}\:{cm} \\ $$$$\:\:=\sqrt{\mathrm{10}.\mathrm{438}}\:{cm}\:\approx\:\mathrm{3}.\mathrm{23}\:{cm}\:. \\ $$

Commented by tawa tawa last updated on 24/May/17

God bless you sir. I really appreciate.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com