Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 138564 by DomaPeti last updated on 14/Apr/21

y∙y′=0.5∙(1+y∙c_1 )^2 ∙c_2 +0.5    y=?

$${y}\centerdot{y}'=\mathrm{0}.\mathrm{5}\centerdot\left(\mathrm{1}+{y}\centerdot{c}_{\mathrm{1}} \right)^{\mathrm{2}} \centerdot{c}_{\mathrm{2}} +\mathrm{0}.\mathrm{5} \\ $$$$ \\ $$$${y}=? \\ $$

Answered by mr W last updated on 15/Apr/21

2yy′=c_2 (1+c_1 y)^2 +1=c_2 c_1 ^2 y^2 +2c_1 c_2 y+c_2 +1                              =ay^2 +by+c  ∫((2ydy)/(ay^2 +by+c))=∫dx  x=∫((2ydy)/(ay^2 +by+c))  ...

$$\mathrm{2}{yy}'={c}_{\mathrm{2}} \left(\mathrm{1}+{c}_{\mathrm{1}} {y}\right)^{\mathrm{2}} +\mathrm{1}={c}_{\mathrm{2}} {c}_{\mathrm{1}} ^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{2}{c}_{\mathrm{1}} {c}_{\mathrm{2}} {y}+{c}_{\mathrm{2}} +\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={ay}^{\mathrm{2}} +{by}+{c} \\ $$$$\int\frac{\mathrm{2}{ydy}}{{ay}^{\mathrm{2}} +{by}+{c}}=\int{dx} \\ $$$${x}=\int\frac{\mathrm{2}{ydy}}{{ay}^{\mathrm{2}} +{by}+{c}} \\ $$$$... \\ $$

Commented by mr W last updated on 15/Apr/21

Commented by ArielVyny last updated on 15/Apr/21

for ∫(1/((dx+e)(√(ax^2 +bx+c))))dx=??

$${for}\:\int\frac{\mathrm{1}}{\left({dx}+{e}\right)\sqrt{{ax}^{\mathrm{2}} +{bx}+{c}}}{dx}=?? \\ $$$$ \\ $$

Commented by mr W last updated on 16/Apr/21

please open a new thread for your  question.

$${please}\:{open}\:{a}\:{new}\:{thread}\:{for}\:{your} \\ $$$${question}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com