Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 138473 by henderson last updated on 14/Apr/21

hi !  calculate : lim_(x→∞)  [((ln(x+1))/(ln (x)))]^(x ln (x)) .

$$\boldsymbol{\mathrm{hi}}\:! \\ $$$$\boldsymbol{\mathrm{calculate}}\::\:\underset{{x}\rightarrow\infty} {{lim}}\:\left[\frac{{ln}\left({x}+\mathrm{1}\right)}{{ln}\:\left({x}\right)}\right]^{{x}\:{ln}\:\left({x}\right)} . \\ $$

Answered by mathmax by abdo last updated on 14/Apr/21

let f(x)=(((ln(x+1))/(lnx)))^(xln(x))  ⇒f(x)=e^(xln(x)ln(((ln(x+1))/(lnx))))   and ln(((ln(x+1))/(lnx)))=ln(((lnx+ln(1+(1/x)))/(lnx)))=ln(1+((ln(1+(1/x)))/(lnx)))  ∼ln(1+(1/(xlnx)))∼(1/(xlnx)) ⇒xlnxln(((ln(x+1))/(ln)))∼ 1 ⇒lim_(x→+∞) f(x)=e

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\left(\frac{\mathrm{ln}\left(\mathrm{x}+\mathrm{1}\right)}{\mathrm{lnx}}\right)^{\mathrm{xln}\left(\mathrm{x}\right)} \:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{\mathrm{xln}\left(\mathrm{x}\right)\mathrm{ln}\left(\frac{\mathrm{ln}\left(\mathrm{x}+\mathrm{1}\right)}{\mathrm{lnx}}\right)} \\ $$$$\mathrm{and}\:\mathrm{ln}\left(\frac{\mathrm{ln}\left(\mathrm{x}+\mathrm{1}\right)}{\mathrm{lnx}}\right)=\mathrm{ln}\left(\frac{\mathrm{lnx}+\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)}{\mathrm{lnx}}\right)=\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)}{\mathrm{lnx}}\right) \\ $$$$\sim\mathrm{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{xlnx}}\right)\sim\frac{\mathrm{1}}{\mathrm{xlnx}}\:\Rightarrow\mathrm{xlnxln}\left(\frac{\mathrm{ln}\left(\mathrm{x}+\mathrm{1}\right)}{\mathrm{ln}}\right)\sim\:\mathrm{1}\:\Rightarrow\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \mathrm{f}\left(\mathrm{x}\right)=\mathrm{e} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com