Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 13840 by Tinkutara last updated on 24/May/17

Solve:  (a) tanx + secx = 2cosx  (b) sinθ + tanθ − sin2θ = 0

$$\mathrm{Solve}: \\ $$$$\left(\mathrm{a}\right)\:\mathrm{tan}{x}\:+\:\mathrm{sec}{x}\:=\:\mathrm{2cos}{x} \\ $$$$\left(\mathrm{b}\right)\:\mathrm{sin}\theta\:+\:\mathrm{tan}\theta\:−\:\mathrm{sin2}\theta\:=\:\mathrm{0} \\ $$

Answered by ajfour last updated on 24/May/17

(a)  tan x+sec x=2cos x  granted  x≠(2n+1)(π/2)  1+sin x=2cos^2 x  1+sin x=2−2sin^2 x  2sin^2 x+sin x−1=0  2sin^2 x+2sin x−sin x−1=0  (2sin x−1)(sin x+1)=0  sin x≠−1 since  x≠(2n+1)(π/2)  ⇒ sin x=(1/2)  x=nπ+(−1)^n  (π/6) .  (b)  sin θ+tan θ−2sin θcos θ=0  sin θ+((sin θ)/(cos θ))−2sin θcos θ=0  sin θ(1+(1/(cos θ))−2cos θ)=0  tan θ(1+cos θ−2cos^2 θ)=0  tan θ(1+2cos θ−cos θ−2cos^2 θ)=0  tan θ(1−cos θ)(1+2cos θ)=0  ⇒  tan θ=0 , or         cos θ=1, or   cos θ=−(1/2)  θ=nπ,    θ=2mπ,  θ=(2k+1)π±(π/3) .

$$\left({a}\right) \\ $$$$\mathrm{tan}\:{x}+\mathrm{sec}\:{x}=\mathrm{2cos}\:{x} \\ $$$${granted}\:\:{x}\neq\left(\mathrm{2}{n}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{1}+\mathrm{sin}\:{x}=\mathrm{2cos}\:^{\mathrm{2}} {x} \\ $$$$\mathrm{1}+\mathrm{sin}\:{x}=\mathrm{2}−\mathrm{2sin}\:^{\mathrm{2}} {x} \\ $$$$\mathrm{2sin}\:^{\mathrm{2}} {x}+\mathrm{sin}\:{x}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{2sin}\:^{\mathrm{2}} {x}+\mathrm{2sin}\:{x}−\mathrm{sin}\:{x}−\mathrm{1}=\mathrm{0} \\ $$$$\left(\mathrm{2sin}\:{x}−\mathrm{1}\right)\left(\mathrm{sin}\:{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{sin}\:{x}\neq−\mathrm{1}\:{since}\:\:{x}\neq\left(\mathrm{2}{n}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{sin}\:{x}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${x}={n}\pi+\left(−\mathrm{1}\right)^{{n}} \:\frac{\pi}{\mathrm{6}}\:. \\ $$$$\left({b}\right) \\ $$$$\mathrm{sin}\:\theta+\mathrm{tan}\:\theta−\mathrm{2sin}\:\theta\mathrm{cos}\:\theta=\mathrm{0} \\ $$$$\mathrm{sin}\:\theta+\frac{\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta}−\mathrm{2sin}\:\theta\mathrm{cos}\:\theta=\mathrm{0} \\ $$$$\mathrm{sin}\:\theta\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{cos}\:\theta}−\mathrm{2cos}\:\theta\right)=\mathrm{0} \\ $$$$\mathrm{tan}\:\theta\left(\mathrm{1}+\mathrm{cos}\:\theta−\mathrm{2cos}\:^{\mathrm{2}} \theta\right)=\mathrm{0} \\ $$$$\mathrm{tan}\:\theta\left(\mathrm{1}+\mathrm{2cos}\:\theta−\mathrm{cos}\:\theta−\mathrm{2cos}\:^{\mathrm{2}} \theta\right)=\mathrm{0} \\ $$$$\mathrm{tan}\:\theta\left(\mathrm{1}−\mathrm{cos}\:\theta\right)\left(\mathrm{1}+\mathrm{2cos}\:\theta\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{tan}\:\theta=\mathrm{0}\:,\:{or} \\ $$$$\:\:\:\:\:\:\:\mathrm{cos}\:\theta=\mathrm{1},\:{or}\:\:\:\mathrm{cos}\:\theta=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\theta={n}\pi,\:\:\:\:\theta=\mathrm{2}{m}\pi,\:\:\theta=\left(\mathrm{2}{k}+\mathrm{1}\right)\pi\pm\frac{\pi}{\mathrm{3}}\:. \\ $$$$ \\ $$

Commented by Tinkutara last updated on 24/May/17

(a) part is wrong because you noted  down the incorrect question; it should  be 2 cos x instead of cos x in the first  line.

$$\left(\mathrm{a}\right)\:\mathrm{part}\:\mathrm{is}\:\mathrm{wrong}\:\mathrm{because}\:\mathrm{you}\:\mathrm{noted} \\ $$$$\mathrm{down}\:\mathrm{the}\:\mathrm{incorrect}\:\mathrm{question};\:\mathrm{it}\:\mathrm{should} \\ $$$$\mathrm{be}\:\mathrm{2}\:\mathrm{cos}\:{x}\:\mathrm{instead}\:\mathrm{of}\:\mathrm{cos}\:{x}\:\mathrm{in}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{line}. \\ $$

Commented by Tinkutara last updated on 24/May/17

What′s my mistake in (b)?  sinθ + tanθ = 2sinθcosθ  Either sinθ = nπ and if not, then  1 + (1/(cosθ)) = 2cosθ  ⇒ 1 + cosθ = 2cos^2 θ  ⇒ cosθ = 2cos^2 θ − 1  ⇒ cosθ = cos2θ  ⇒ θ = 2nπ ± 2θ  3θ = 2nπ or −θ = 2nπ  θ = ((2nπ)/3) or θ = −2nπ.  I do not get θ = (2n + 1)π ± (π/3). Why?

$$\mathrm{What}'\mathrm{s}\:\mathrm{my}\:\mathrm{mistake}\:\mathrm{in}\:\left(\mathrm{b}\right)? \\ $$$$\mathrm{sin}\theta\:+\:\mathrm{tan}\theta\:=\:\mathrm{2sin}\theta\mathrm{cos}\theta \\ $$$$\mathrm{Either}\:\mathrm{sin}\theta\:=\:{n}\pi\:\mathrm{and}\:\mathrm{if}\:\mathrm{not},\:\mathrm{then} \\ $$$$\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{cos}\theta}\:=\:\mathrm{2cos}\theta \\ $$$$\Rightarrow\:\mathrm{1}\:+\:\mathrm{cos}\theta\:=\:\mathrm{2cos}^{\mathrm{2}} \theta \\ $$$$\Rightarrow\:\mathrm{cos}\theta\:=\:\mathrm{2cos}^{\mathrm{2}} \theta\:−\:\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{cos}\theta\:=\:\mathrm{cos2}\theta \\ $$$$\Rightarrow\:\theta\:=\:\mathrm{2}{n}\pi\:\pm\:\mathrm{2}\theta \\ $$$$\mathrm{3}\theta\:=\:\mathrm{2}{n}\pi\:\mathrm{or}\:−\theta\:=\:\mathrm{2}{n}\pi \\ $$$$\theta\:=\:\frac{\mathrm{2}{n}\pi}{\mathrm{3}}\:\mathrm{or}\:\theta\:=\:−\mathrm{2}{n}\pi. \\ $$$$\mathrm{I}\:\mathrm{do}\:\mathrm{not}\:\mathrm{get}\:\theta\:=\:\left(\mathrm{2}{n}\:+\:\mathrm{1}\right)\pi\:\pm\:\frac{\pi}{\mathrm{3}}.\:\mathrm{Why}? \\ $$

Commented by prakash jain last updated on 24/May/17

(2n+1)π+(π/3)=((6nπ+3π+π)/3)  =((2π(3n+2))/3)  (2n+1)π−(π/3)=((2π(3n+1))/3)  combined with θ=2nπ  So both solutions are same.

$$\left(\mathrm{2}{n}+\mathrm{1}\right)\pi+\frac{\pi}{\mathrm{3}}=\frac{\mathrm{6}{n}\pi+\mathrm{3}\pi+\pi}{\mathrm{3}} \\ $$$$=\frac{\mathrm{2}\pi\left(\mathrm{3}{n}+\mathrm{2}\right)}{\mathrm{3}} \\ $$$$\left(\mathrm{2}{n}+\mathrm{1}\right)\pi−\frac{\pi}{\mathrm{3}}=\frac{\mathrm{2}\pi\left(\mathrm{3}{n}+\mathrm{1}\right)}{\mathrm{3}} \\ $$$$\mathrm{combined}\:\mathrm{with}\:\theta=\mathrm{2}{n}\pi \\ $$$$\mathrm{So}\:\mathrm{both}\:\mathrm{solutions}\:\mathrm{are}\:\mathrm{same}. \\ $$

Commented by ajfour last updated on 24/May/17

(2n+1)π±(π/3)=((2mπ)/3)  where n,m are integers .

$$\left(\mathrm{2}{n}+\mathrm{1}\right)\pi\pm\frac{\pi}{\mathrm{3}}=\frac{\mathrm{2}{m}\pi}{\mathrm{3}} \\ $$$${where}\:{n},{m}\:{are}\:{integers}\:. \\ $$

Commented by Tinkutara last updated on 24/May/17

Thanks.

$$\mathrm{Thanks}. \\ $$

Commented by ajfour last updated on 24/May/17

corrected..part (a)

$${corrected}..{part}\:\left({a}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com