Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 138386 by ajfour last updated on 13/Apr/21

Commented by ajfour last updated on 13/Apr/21

Find maximum area of △ABC.

$${Find}\:{maximum}\:{area}\:{of}\:\bigtriangleup{ABC}. \\ $$

Answered by mr W last updated on 13/Apr/21

Commented by mr W last updated on 13/Apr/21

C(c,0) with (√3)≤c≤(√(15))  D(c,1)  say E(h,k)  h^2 +k^2 =2^2 =4   ...(i)  (h−c)^2 +(k−1)^2 =2^2 =4   ...(ii)  (i)−(ii):  c(2h−c)+(2k−1)=0  ⇒h=((c^2 +1−2k)/(2c))  (((c^2 +1−2k)/(2c)))^2 +k^2 =4  k^2 −k+((c^2 +1)/4)−((4c^2 )/(c^2 +1))=0  k=(1/2)(1+c(√((15−c^2 )/(c^2 +1))))  y_B =(1/2)(1+k)=(3/4)+(c/4)(√((15−c^2 )/(c^2 +1)))  Δ_(ABC) =A=((cy_B )/2)  ⇒A=(c/8)(3+c(√((15−c^2 )/(c^2 +1))))  for A_(max) : (dA/dc)=0  A_(max) ≈2.0378 when c≈3.2959

$${C}\left({c},\mathrm{0}\right)\:{with}\:\sqrt{\mathrm{3}}\leqslant{c}\leqslant\sqrt{\mathrm{15}} \\ $$$${D}\left({c},\mathrm{1}\right) \\ $$$${say}\:{E}\left({h},{k}\right) \\ $$$${h}^{\mathrm{2}} +{k}^{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} =\mathrm{4}\:\:\:...\left({i}\right) \\ $$$$\left({h}−{c}\right)^{\mathrm{2}} +\left({k}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} =\mathrm{4}\:\:\:...\left({ii}\right) \\ $$$$\left({i}\right)−\left({ii}\right): \\ $$$${c}\left(\mathrm{2}{h}−{c}\right)+\left(\mathrm{2}{k}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{h}=\frac{{c}^{\mathrm{2}} +\mathrm{1}−\mathrm{2}{k}}{\mathrm{2}{c}} \\ $$$$\left(\frac{{c}^{\mathrm{2}} +\mathrm{1}−\mathrm{2}{k}}{\mathrm{2}{c}}\right)^{\mathrm{2}} +{k}^{\mathrm{2}} =\mathrm{4} \\ $$$${k}^{\mathrm{2}} −{k}+\frac{{c}^{\mathrm{2}} +\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{4}{c}^{\mathrm{2}} }{{c}^{\mathrm{2}} +\mathrm{1}}=\mathrm{0} \\ $$$${k}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+{c}\sqrt{\frac{\mathrm{15}−{c}^{\mathrm{2}} }{{c}^{\mathrm{2}} +\mathrm{1}}}\right) \\ $$$${y}_{{B}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+{k}\right)=\frac{\mathrm{3}}{\mathrm{4}}+\frac{{c}}{\mathrm{4}}\sqrt{\frac{\mathrm{15}−{c}^{\mathrm{2}} }{{c}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\Delta_{{ABC}} ={A}=\frac{{cy}_{{B}} }{\mathrm{2}} \\ $$$$\Rightarrow{A}=\frac{{c}}{\mathrm{8}}\left(\mathrm{3}+{c}\sqrt{\frac{\mathrm{15}−{c}^{\mathrm{2}} }{{c}^{\mathrm{2}} +\mathrm{1}}}\right) \\ $$$${for}\:{A}_{{max}} :\:\frac{{dA}}{{dc}}=\mathrm{0} \\ $$$${A}_{{max}} \approx\mathrm{2}.\mathrm{0378}\:{when}\:{c}\approx\mathrm{3}.\mathrm{2959} \\ $$

Commented by mr W last updated on 13/Apr/21

Commented by ajfour last updated on 13/Apr/21

Thank you sir, your way is  fine enough!

$${Thank}\:{you}\:{sir},\:{your}\:{way}\:{is} \\ $$$${fine}\:{enough}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com