Question Number 138350 by abenarhodym last updated on 12/Apr/21 | ||
$$\sqrt{\mathrm{2}}\left(\sqrt{\mathrm{8}}−\frac{\mathrm{2}}{\:\sqrt{\mathrm{8}}}\right) \\ $$ | ||
Answered by Ñï= last updated on 12/Apr/21 | ||
$$\sqrt{\mathrm{2}}\left(\sqrt{\mathrm{8}}−\frac{\mathrm{2}}{\:\sqrt{\mathrm{8}}}\right)=\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{2}^{\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{2}^{\mathrm{1}−\frac{\mathrm{3}}{\mathrm{2}}} \right)=\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}}} −\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{2}^{\mathrm{2}} −\mathrm{2}^{\mathrm{0}} =\mathrm{3} \\ $$ | ||
Answered by Rasheed.Sindhi last updated on 12/Apr/21 | ||
$$=\sqrt{\mathrm{2}}\left(\mathrm{2}\sqrt{\mathrm{2}}−\frac{\mathrm{2}}{\mathrm{2}\sqrt{\mathrm{2}}}\right) \\ $$$$=\mathrm{2}.\mathrm{2}−\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$=\mathrm{4}−\mathrm{1}=\mathrm{3} \\ $$ | ||
Answered by cherokeesay last updated on 12/Apr/21 | ||
$$=\:\sqrt{\mathrm{2}}\left(\frac{\mathrm{8}\:−\mathrm{2}}{\:\sqrt{\mathrm{8}}}\right)\:=\:\frac{\sqrt{\mathrm{16}}}{\mathrm{8}}×\mathrm{6}\:=\:\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{6}\:=\:\mathrm{3} \\ $$ | ||