Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 137953 by mnjuly1970 last updated on 08/Apr/21

                             ....Nice ... ... ... ...Calculus....       find  the value of::        𝛗=∫_1 ^( ∞) ((ln(1+x))/x^2 )dx=???

$$\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\mathscr{N}{ice}\:...\:...\:...\:...\mathscr{C}{alculus}.... \\ $$$$\:\:\:\:\:{find}\:\:{the}\:{value}\:{of}:: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{1}} ^{\:\infty} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}^{\mathrm{2}} }{dx}=??? \\ $$

Answered by Ñï= last updated on 08/Apr/21

Ο†=∫_1 ^∞ ((ln(1+x))/x^2 )dx=βˆ’βˆ«_1 ^0 ((ln(1+(1/x)))/x^2 )x^2 dx  =∫_0 ^1 ln(1+x)βˆ’lnxdx  ={(x+1)ln(x+1)βˆ’xlnx}_0 ^1   =2ln2

$$\phi=\int_{\mathrm{1}} ^{\infty} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}^{\mathrm{2}} }{dx}=βˆ’\int_{\mathrm{1}} ^{\mathrm{0}} \frac{{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)}{{x}^{\mathrm{2}} }{x}^{\mathrm{2}} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}\right)βˆ’{lnxdx} \\ $$$$=\left\{\left({x}+\mathrm{1}\right){ln}\left({x}+\mathrm{1}\right)βˆ’{xlnx}\right\}_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\mathrm{2}{ln}\mathrm{2} \\ $$

Commented by mnjuly1970 last updated on 08/Apr/21

  very nice solution...thank you  mr ...

$$\:\:{very}\:{nice}\:{solution}...{thank}\:{you} \\ $$$${mr}\:... \\ $$

Answered by mnjuly1970 last updated on 08/Apr/21

    f(a)=∫_1 ^( ∞) ((ln(1+ax))/x^2 )dx           f β€²(a)=∫_1 ^( ∞) (1/(x(1+ax)))dx        =∫_1 ^( ∞) ((1/x) βˆ’(a/(1+ax)))dx=[ln((x/(1+ax)))]_1 ^∞   =βˆ’ln(a)+ln(1+a)   ∴ f(a)=aβˆ’aln(a)+(1+a)ln(1+a)βˆ’(a)+C     f(0)=0=C     𝛗=f (1)=1+2ln(2)βˆ’1=ln(4)      𝛗=ln(4)...βœ“

$$\:\:\:\:{f}\left({a}\right)=\int_{\mathrm{1}} ^{\:\infty} \frac{{ln}\left(\mathrm{1}+{ax}\right)}{{x}^{\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:\:\:{f}\:'\left({a}\right)=\int_{\mathrm{1}} ^{\:\infty} \frac{\mathrm{1}}{{x}\left(\mathrm{1}+{ax}\right)}{dx} \\ $$$$\:\:\:\:\:\:=\int_{\mathrm{1}} ^{\:\infty} \left(\frac{\mathrm{1}}{{x}}\:βˆ’\frac{{a}}{\mathrm{1}+{ax}}\right){dx}=\left[{ln}\left(\frac{{x}}{\mathrm{1}+{ax}}\right)\right]_{\mathrm{1}} ^{\infty} \\ $$$$=βˆ’{ln}\left({a}\right)+{ln}\left(\mathrm{1}+{a}\right) \\ $$$$\:\therefore\:{f}\left({a}\right)={a}βˆ’{aln}\left({a}\right)+\left(\mathrm{1}+{a}\right){ln}\left(\mathrm{1}+{a}\right)βˆ’\left({a}\right)+{C} \\ $$$$\:\:\:{f}\left(\mathrm{0}\right)=\mathrm{0}={C} \\ $$$$\:\:\:\boldsymbol{\phi}={f}\:\left(\mathrm{1}\right)=\mathrm{1}+\mathrm{2}{ln}\left(\mathrm{2}\right)βˆ’\mathrm{1}={ln}\left(\mathrm{4}\right) \\ $$$$\:\:\:\:\boldsymbol{\phi}={ln}\left(\mathrm{4}\right)...\checkmark \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com