Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 137893 by bemath last updated on 07/Apr/21

Answered by benjo_mathlover last updated on 08/Apr/21

by algebra  let F(0,0), D(1,0), A(0,1), C(1,1)  B((1/2),1) , E((1/4),0)  eq of line AE : x+(1/4)y=(1/4);   eq of line FB :  y=2x   intersect at point G((1/6),(1/3))  eq of line EC : 4x−3y=1  eq of line BD : 2x+y=2  intersect at point H((7/(10)), (3/5))  shadow of area is   (1/2)∣  determinant ((((1/4)     0)),(((7/(10))    (3/5) )))+ determinant ((((7/(10))    (3/5))),(((1/2)     1)))+  determinant ((((1/2)    1)),(((1/6)    (1/3))))+  determinant ((((1/6)    (1/3))),(((1/4)     0)))∣  =(1/2)∣((3/(20))+(4/(10))+0−(1/(12)))∣  = (1/2)(((11)/(20)) −(1/(12))) =(7/(30))

$${by}\:{algebra} \\ $$$${let}\:{F}\left(\mathrm{0},\mathrm{0}\right),\:{D}\left(\mathrm{1},\mathrm{0}\right),\:{A}\left(\mathrm{0},\mathrm{1}\right),\:{C}\left(\mathrm{1},\mathrm{1}\right) \\ $$$${B}\left(\frac{\mathrm{1}}{\mathrm{2}},\mathrm{1}\right)\:,\:{E}\left(\frac{\mathrm{1}}{\mathrm{4}},\mathrm{0}\right) \\ $$$${eq}\:{of}\:{line}\:{AE}\::\:{x}+\frac{\mathrm{1}}{\mathrm{4}}{y}=\frac{\mathrm{1}}{\mathrm{4}};\: \\ $$$${eq}\:{of}\:{line}\:{FB}\::\:\:{y}=\mathrm{2}{x}\: \\ $$$${intersect}\:{at}\:{point}\:{G}\left(\frac{\mathrm{1}}{\mathrm{6}},\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$${eq}\:{of}\:{line}\:{EC}\::\:\mathrm{4}{x}−\mathrm{3}{y}=\mathrm{1} \\ $$$${eq}\:{of}\:{line}\:{BD}\::\:\mathrm{2}{x}+{y}=\mathrm{2} \\ $$$${intersect}\:{at}\:{point}\:{H}\left(\frac{\mathrm{7}}{\mathrm{10}},\:\frac{\mathrm{3}}{\mathrm{5}}\right) \\ $$$${shadow}\:{of}\:{area}\:{is} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{2}}\mid\:\begin{vmatrix}{\frac{\mathrm{1}}{\mathrm{4}}\:\:\:\:\:\mathrm{0}}\\{\frac{\mathrm{7}}{\mathrm{10}}\:\:\:\:\frac{\mathrm{3}}{\mathrm{5}}\:}\end{vmatrix}+\begin{vmatrix}{\frac{\mathrm{7}}{\mathrm{10}}\:\:\:\:\frac{\mathrm{3}}{\mathrm{5}}}\\{\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\mathrm{1}}\end{vmatrix}+\:\begin{vmatrix}{\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\mathrm{1}}\\{\frac{\mathrm{1}}{\mathrm{6}}\:\:\:\:\frac{\mathrm{1}}{\mathrm{3}}}\end{vmatrix}+\:\begin{vmatrix}{\frac{\mathrm{1}}{\mathrm{6}}\:\:\:\:\frac{\mathrm{1}}{\mathrm{3}}}\\{\frac{\mathrm{1}}{\mathrm{4}}\:\:\:\:\:\mathrm{0}}\end{vmatrix}\mid \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mid\left(\frac{\mathrm{3}}{\mathrm{20}}+\frac{\mathrm{4}}{\mathrm{10}}+\mathrm{0}−\frac{\mathrm{1}}{\mathrm{12}}\right)\mid \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{11}}{\mathrm{20}}\:−\frac{\mathrm{1}}{\mathrm{12}}\right)\:=\frac{\mathrm{7}}{\mathrm{30}} \\ $$

Answered by mr W last updated on 08/Apr/21

((EG)/(GA))=((1/4)/(1/2))=(1/2) ⇒EG=(1/2)GA=(1/3)AE  ⇒ΔEBG=(1/3)ΔEBA=(1/6)ΔEAC=(([ACDF[)/(12))  ((EH)/(HC))=((3/4)/(1/2))=(3/2) ⇒EH=(3/2)HC=(3/5)EC  ⇒ΔEBH=(3/5)ΔEBC=(3/(10))ΔEAC=((3[ACDF])/(20))    shaded area=ΔEBG+ΔEBH          =((1/(12))+(3/(20)))[ACDF]=(7/(30))×[ACDF]          =(7/(30)) cm^2

$$\frac{{EG}}{{GA}}=\frac{\frac{\mathrm{1}}{\mathrm{4}}}{\frac{\mathrm{1}}{\mathrm{2}}}=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow{EG}=\frac{\mathrm{1}}{\mathrm{2}}{GA}=\frac{\mathrm{1}}{\mathrm{3}}{AE} \\ $$$$\Rightarrow\Delta{EBG}=\frac{\mathrm{1}}{\mathrm{3}}\Delta{EBA}=\frac{\mathrm{1}}{\mathrm{6}}\Delta{EAC}=\frac{\left[{ACDF}\left[\right.\right.}{\mathrm{12}} \\ $$$$\frac{{EH}}{{HC}}=\frac{\frac{\mathrm{3}}{\mathrm{4}}}{\frac{\mathrm{1}}{\mathrm{2}}}=\frac{\mathrm{3}}{\mathrm{2}}\:\Rightarrow{EH}=\frac{\mathrm{3}}{\mathrm{2}}{HC}=\frac{\mathrm{3}}{\mathrm{5}}{EC} \\ $$$$\Rightarrow\Delta{EBH}=\frac{\mathrm{3}}{\mathrm{5}}\Delta{EBC}=\frac{\mathrm{3}}{\mathrm{10}}\Delta{EAC}=\frac{\mathrm{3}\left[{ACDF}\right]}{\mathrm{20}} \\ $$$$ \\ $$$${shaded}\:{area}=\Delta{EBG}+\Delta{EBH} \\ $$$$\:\:\:\:\:\:\:\:=\left(\frac{\mathrm{1}}{\mathrm{12}}+\frac{\mathrm{3}}{\mathrm{20}}\right)\left[{ACDF}\right]=\frac{\mathrm{7}}{\mathrm{30}}×\left[{ACDF}\right] \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{7}}{\mathrm{30}}\:{cm}^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com