Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 137613 by physicstutes last updated on 04/Apr/21

Two particles of mass m and 4m are connected by a light inelastic  string of length 3a, which passes through a small smooth fixed ring.  The heavier particle hangs at rest at a distance 2a beneath the ring,  while the lighter particle describes a horizontal circle with constant  speed.   Find  (a) The distance of the plane of the circle below the ring.  (b) The angular speed of the lighter particle.

$$\mathrm{Two}\:\mathrm{particles}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{and}\:\mathrm{4}{m}\:\mathrm{are}\:\mathrm{connected}\:\mathrm{by}\:\mathrm{a}\:\mathrm{light}\:\mathrm{inelastic} \\ $$$$\mathrm{string}\:\mathrm{of}\:\mathrm{length}\:\mathrm{3}{a},\:\mathrm{which}\:\mathrm{passes}\:\mathrm{through}\:\mathrm{a}\:\mathrm{small}\:\mathrm{smooth}\:\mathrm{fixed}\:\mathrm{ring}. \\ $$$$\mathrm{The}\:\mathrm{heavier}\:\mathrm{particle}\:\mathrm{hangs}\:\mathrm{at}\:\mathrm{rest}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{2}{a}\:\mathrm{beneath}\:\mathrm{the}\:\mathrm{ring}, \\ $$$$\mathrm{while}\:\mathrm{the}\:\mathrm{lighter}\:\mathrm{particle}\:\mathrm{describes}\:\mathrm{a}\:\mathrm{horizontal}\:\mathrm{circle}\:\mathrm{with}\:\mathrm{constant} \\ $$$$\mathrm{speed}. \\ $$$$\:\mathrm{Find} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{The}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{the}\:\mathrm{plane}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{below}\:\mathrm{the}\:\mathrm{ring}. \\ $$$$\left(\mathrm{b}\right)\:\mathrm{The}\:\mathrm{angular}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{lighter}\:\mathrm{particle}. \\ $$

Answered by mr W last updated on 04/Apr/21

(a)  sin θ=(1/4)  h=a sin θ=(a/4)  (b)  ma cos θ ω^2 =4mg cos θ  ⇒ω=2(√(g/a))

$$\left({a}\right) \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${h}={a}\:\mathrm{sin}\:\theta=\frac{{a}}{\mathrm{4}} \\ $$$$\left({b}\right) \\ $$$${ma}\:\mathrm{cos}\:\theta\:\omega^{\mathrm{2}} =\mathrm{4}{mg}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow\omega=\mathrm{2}\sqrt{\frac{{g}}{{a}}} \\ $$

Commented by physicstutes last updated on 04/Apr/21

sir why is sin θ = (1/4) ?

$$\mathrm{sir}\:\mathrm{why}\:\mathrm{is}\:\mathrm{sin}\:\theta\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:? \\ $$

Commented by mr W last updated on 04/Apr/21

Commented by physicstutes last updated on 06/Apr/21

sorry to disturb sir,but when i look at the triangle containing  θ i can′t seem to get how sin θ = (1/4), is sin θ usually the ratio  of tensions or of masses, thats my crazy doubt

$$\mathrm{sorry}\:\mathrm{to}\:\mathrm{disturb}\:\mathrm{sir},\mathrm{but}\:\mathrm{when}\:\mathrm{i}\:\mathrm{look}\:\mathrm{at}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{containing} \\ $$$$\theta\:\mathrm{i}\:\mathrm{can}'\mathrm{t}\:\mathrm{seem}\:\mathrm{to}\:\mathrm{get}\:\mathrm{how}\:\mathrm{sin}\:\theta\:=\:\frac{\mathrm{1}}{\mathrm{4}},\:\mathrm{is}\:\mathrm{sin}\:\theta\:\mathrm{usually}\:\mathrm{the}\:\mathrm{ratio} \\ $$$$\mathrm{of}\:\mathrm{tensions}\:\mathrm{or}\:\mathrm{of}\:\mathrm{masses},\:\mathrm{thats}\:\mathrm{my}\:\mathrm{crazy}\:\mathrm{doubt} \\ $$

Commented by mr W last updated on 06/Apr/21

in Y−direction we have  4mg sin θ−mg=0  ⇒sin θ=(1/4)  in X−direction we have  4mg cos θ−mr ω^2 =0  4mg cos θ−ma cos θ ω^2 =0  4g−a ω^2 =0  ⇒ω^2 =((4g)/a)

$${in}\:{Y}−{direction}\:{we}\:{have} \\ $$$$\mathrm{4}{mg}\:\mathrm{sin}\:\theta−{mg}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${in}\:{X}−{direction}\:{we}\:{have} \\ $$$$\mathrm{4}{mg}\:\mathrm{cos}\:\theta−{mr}\:\omega^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{4}{mg}\:\mathrm{cos}\:\theta−{ma}\:\mathrm{cos}\:\theta\:\omega^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{4}{g}−{a}\:\omega^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\omega^{\mathrm{2}} =\frac{\mathrm{4}{g}}{{a}} \\ $$

Commented by physicstutes last updated on 06/Apr/21

wow i get nicely now. Thank you sir

$$\mathrm{wow}\:\mathrm{i}\:\mathrm{get}\:\mathrm{nicely}\:\mathrm{now}.\:\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com