Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 137588 by bramlexs22 last updated on 04/Apr/21

For a positive number n , let  f(n) be the value of   f(n)=((4n+(√(4n^2 −1)))/( (√(2n+1)) +(√(2n−1))))  calculate f(1)+f(2)+f(3)+...+f(40).

$${For}\:{a}\:{positive}\:{number}\:{n}\:,\:{let} \\ $$$${f}\left({n}\right)\:{be}\:{the}\:{value}\:{of}\: \\ $$$${f}\left({n}\right)=\frac{\mathrm{4}{n}+\sqrt{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}}{\:\sqrt{\mathrm{2}{n}+\mathrm{1}}\:+\sqrt{\mathrm{2}{n}−\mathrm{1}}} \\ $$$${calculate}\:{f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+{f}\left(\mathrm{3}\right)+...+{f}\left(\mathrm{40}\right). \\ $$

Answered by bemath last updated on 04/Apr/21

⇔ f(n)=((((√(2n+1)))^2 +((√(2n−1)))^2 +(√((2n+1)(2n−1))))/( (√(2n+1)) +(√(2n−1))))  f(n)= ((((√(2n+1)) )^3 −((√(2n−1)) )^3 )/2)  f(1)+f(2)+f(3)+...+f(40)  = (((√3^3 )−(√1^3 ))/2) + (((√5^3 )−(√3^3 ))/2) + (((√7^3 )−(√5^3 ))/2) +...+ (((√(81^3 ))−(√(79^3 )))/2)  [ telescopy series ]  f(1)+f(2)+f(3)+...+f(40)  = (((√(81^3 ))−(√1^3 ))/2) = ((9^3 −1)/2) = ((728)/2) = 364

$$\Leftrightarrow\:{f}\left({n}\right)=\frac{\left(\sqrt{\mathrm{2}{n}+\mathrm{1}}\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{2}{n}−\mathrm{1}}\right)^{\mathrm{2}} +\sqrt{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}−\mathrm{1}\right)}}{\:\sqrt{\mathrm{2}{n}+\mathrm{1}}\:+\sqrt{\mathrm{2}{n}−\mathrm{1}}} \\ $$$${f}\left({n}\right)=\:\frac{\left(\sqrt{\mathrm{2}{n}+\mathrm{1}}\:\right)^{\mathrm{3}} −\left(\sqrt{\mathrm{2}{n}−\mathrm{1}}\:\right)^{\mathrm{3}} }{\mathrm{2}} \\ $$$${f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+{f}\left(\mathrm{3}\right)+...+{f}\left(\mathrm{40}\right) \\ $$$$=\:\frac{\sqrt{\mathrm{3}^{\mathrm{3}} }−\sqrt{\mathrm{1}^{\mathrm{3}} }}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{5}^{\mathrm{3}} }−\sqrt{\mathrm{3}^{\mathrm{3}} }}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{7}^{\mathrm{3}} }−\sqrt{\mathrm{5}^{\mathrm{3}} }}{\mathrm{2}}\:+...+\:\frac{\sqrt{\mathrm{81}^{\mathrm{3}} }−\sqrt{\mathrm{79}^{\mathrm{3}} }}{\mathrm{2}} \\ $$$$\left[\:{telescopy}\:{series}\:\right] \\ $$$${f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+{f}\left(\mathrm{3}\right)+...+{f}\left(\mathrm{40}\right) \\ $$$$=\:\frac{\sqrt{\mathrm{81}^{\mathrm{3}} }−\sqrt{\mathrm{1}^{\mathrm{3}} }}{\mathrm{2}}\:=\:\frac{\mathrm{9}^{\mathrm{3}} −\mathrm{1}}{\mathrm{2}}\:=\:\frac{\mathrm{728}}{\mathrm{2}}\:=\:\mathrm{364}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com