Question Number 135420 by liberty last updated on 13/Mar/21 | ||
$${Algebra} \\ $$ Pipe A can fill a tank in two hours and pipe B can fill it in half the time it takes pipe C to empty it. When all 3 are opened, it takes 1.5 hours to fill the pool how much time is required for pipe 'C to empty the tank?\\n | ||
Answered by john_santu last updated on 13/Mar/21 | ||
$$\left(\mathrm{1}\right){pipe}\:{A}\:\Rightarrow{V}_{\mathrm{1}} =\:\frac{{W}}{\mathrm{2}} \\ $$ $$\left(\mathrm{2}\right)\:{pipe}\:{C}\:\Rightarrow\:{V}_{\mathrm{2}} \:=\:\frac{{W}}{{a}} \\ $$ $$\left(\mathrm{3}\right)\:{pipe}\:{B}\:\Rightarrow{V}_{\mathrm{3}} \:=\:\frac{{W}}{{a}/\mathrm{2}} \\ $$ $$\left(\mathrm{4}\right)\:{When}\:{all}\:\mathrm{3}\:{pipe}\:{are}\:{opened} \\ $$ $$\Rightarrow\:\frac{{W}}{{V}_{\mathrm{1}} +{V}_{\mathrm{2}} +{V}_{\mathrm{3}} }\:=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$ $$\Rightarrow\frac{{W}}{\frac{{W}}{\mathrm{2}}+\frac{{W}}{{a}}+\frac{\mathrm{2}{W}}{{a}}}\:=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$ $$\Rightarrow\:\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{{a}}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\:;\:\frac{\mathrm{3}}{{a}}\:=\:\frac{\mathrm{1}}{\mathrm{6}} \\ $$ $${we}\:{get}\:{a}\:=\:\mathrm{18}\:{hour} \\ $$ $$ \\ $$ | ||