Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 135172 by bemath last updated on 11/Mar/21

(x^2 −9)^(3x+5)  = (x−3)^(x−1) .(x+3)^(x−1)   Find solution

$$\left(\mathrm{x}^{\mathrm{2}} −\mathrm{9}\right)^{\mathrm{3x}+\mathrm{5}} \:=\:\left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{x}−\mathrm{1}} .\left(\mathrm{x}+\mathrm{3}\right)^{\mathrm{x}−\mathrm{1}} \\ $$$$\mathrm{Find}\:\mathrm{solution} \\ $$

Answered by john_santu last updated on 11/Mar/21

⇒(x^2 −9)^(3x+5)  = (x^2 −9)^(x−1)   case(1) 3x+5 = x−1 ; x=−3   checking solution (0)^(−4)  = ∞   so x=−3 no solution  case(2) x^2 −9 = 1 ; x = ± (√(10)) solution  case(3) x^2 −9 = 0 , x = 3 , since x=−3(rejected)  case(4) x^2 −9 =−1 ; x = ±2(√2)  cheking solution    { (((−1)^(6(√2)+5)  ≈ −0.0462)),(((−1)^((√2)−1)  ≈ 0.266)) :} no solution   { (((−1)^(−6(√2)+5)  ≈ −0.0462)),(((−1)^(−(√2)−1)  ≈ 0.266)) :}no solution  ∴ the solution is { 3; ± (√(10)) }

$$\Rightarrow\left({x}^{\mathrm{2}} −\mathrm{9}\right)^{\mathrm{3}{x}+\mathrm{5}} \:=\:\left({x}^{\mathrm{2}} −\mathrm{9}\right)^{{x}−\mathrm{1}} \\ $$$${case}\left(\mathrm{1}\right)\:\mathrm{3}{x}+\mathrm{5}\:=\:{x}−\mathrm{1}\:;\:{x}=−\mathrm{3}\: \\ $$$${checking}\:{solution}\:\left(\mathrm{0}\right)^{−\mathrm{4}} \:=\:\infty\: \\ $$$${so}\:{x}=−\mathrm{3}\:{no}\:{solution} \\ $$$${case}\left(\mathrm{2}\right)\:{x}^{\mathrm{2}} −\mathrm{9}\:=\:\mathrm{1}\:;\:{x}\:=\:\pm\:\sqrt{\mathrm{10}}\:{solution} \\ $$$${case}\left(\mathrm{3}\right)\:{x}^{\mathrm{2}} −\mathrm{9}\:=\:\mathrm{0}\:,\:{x}\:=\:\mathrm{3}\:,\:{since}\:{x}=−\mathrm{3}\left({rejected}\right) \\ $$$${case}\left(\mathrm{4}\right)\:{x}^{\mathrm{2}} −\mathrm{9}\:=−\mathrm{1}\:;\:{x}\:=\:\pm\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${cheking}\:{solution}\: \\ $$$$\begin{cases}{\left(−\mathrm{1}\right)^{\mathrm{6}\sqrt{\mathrm{2}}+\mathrm{5}} \:\approx\:−\mathrm{0}.\mathrm{0462}}\\{\left(−\mathrm{1}\right)^{\sqrt{\mathrm{2}}−\mathrm{1}} \:\approx\:\mathrm{0}.\mathrm{266}}\end{cases}\:{no}\:{solution} \\ $$$$\begin{cases}{\left(−\mathrm{1}\right)^{−\mathrm{6}\sqrt{\mathrm{2}}+\mathrm{5}} \:\approx\:−\mathrm{0}.\mathrm{0462}}\\{\left(−\mathrm{1}\right)^{−\sqrt{\mathrm{2}}−\mathrm{1}} \:\approx\:\mathrm{0}.\mathrm{266}}\end{cases}{no}\:{solution} \\ $$$$\therefore\:{the}\:{solution}\:{is}\:\left\{\:\mathrm{3};\:\pm\:\sqrt{\mathrm{10}}\:\right\}\: \\ $$$$ \\ $$

Commented by metamorfose last updated on 11/Mar/21

why −3 isn′t a solution?...

$${why}\:−\mathrm{3}\:{isn}'{t}\:{a}\:{solution}?... \\ $$

Answered by metamorfose last updated on 11/Mar/21

(x^2 −9)^(3x+5) =(x^2 −9)^(x−1) ...  if : (x^2 −9)=0 ... x=3 , x=−3   else :  (3x+5)ln(x^2 −9)=(x−1)ln(x^2 −9)  2(x+3)ln(x^2 −9)=0  x=−3 , x^2 −9=1  x=−3 , x=±(√(10))  S_(IR) ={±3,±(√(10))}

$$\left({x}^{\mathrm{2}} −\mathrm{9}\right)^{\mathrm{3}{x}+\mathrm{5}} =\left({x}^{\mathrm{2}} −\mathrm{9}\right)^{{x}−\mathrm{1}} ... \\ $$$${if}\::\:\left({x}^{\mathrm{2}} −\mathrm{9}\right)=\mathrm{0}\:...\:{x}=\mathrm{3}\:,\:{x}=−\mathrm{3}\: \\ $$$${else}\:: \\ $$$$\left(\mathrm{3}{x}+\mathrm{5}\right){ln}\left({x}^{\mathrm{2}} −\mathrm{9}\right)=\left({x}−\mathrm{1}\right){ln}\left({x}^{\mathrm{2}} −\mathrm{9}\right) \\ $$$$\mathrm{2}\left({x}+\mathrm{3}\right){ln}\left({x}^{\mathrm{2}} −\mathrm{9}\right)=\mathrm{0} \\ $$$${x}=−\mathrm{3}\:,\:{x}^{\mathrm{2}} −\mathrm{9}=\mathrm{1} \\ $$$${x}=−\mathrm{3}\:,\:{x}=\pm\sqrt{\mathrm{10}} \\ $$$${S}_{{IR}} =\left\{\pm\mathrm{3},\pm\sqrt{\mathrm{10}}\right\} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com