Question Number 134817 by bramlexs22 last updated on 07/Mar/21 | ||
![]() | ||
$$ \\ $$ What is the maximum value of abc if a+b+c = 5 and ab+bc+ca = 7?\\n | ||
Commented bybramlexs22 last updated on 09/Mar/21 | ||
![]() | ||
$$\mathrm{thanks}\:\mathrm{you}\:\mathrm{all}\:\mathrm{sir} \\ $$ | ||
Commented byjohn_santu last updated on 08/Mar/21 | ||
![]() | ||
$${let}\:{a}+{b}\:=\:{x}\:{then}\:{c}\:=\:\mathrm{5}−{x} \\ $$ $$\left({i}\right)\:{xc}\:=\:\left({a}+{b}\right){c}\:=\:{ac}+{bc}\:=\:\mathrm{7}−{ab} \\ $$ $${then}\:{ab}\:=\:\mathrm{7}−{xc}\:{so}\:{abc}\:=\:\left(\mathrm{7}−{xc}\right){c} \\ $$ $${abc}\:=\:\mathrm{7}{c}−{xc}^{\mathrm{2}} \:,\:{injecting}\:{c}=\mathrm{5}−{x} \\ $$ $${we}\:{get}\:{\color{mathred}{a}\color{mathred}{b}\color{mathred}{c}}\color{mathred}{\:}\color{mathred}{=}\color{mathred}{\:}{\color{mathred}{f}}\color{mathred}{\left(}{\color{mathred}{x}}\color{mathred}{\right)}\color{mathred}{=}\color{mathred}{\:}\mathrm{\color{mathred}{7}}\color{mathred}{\left(}\mathrm{\color{mathred}{5}}\color{mathred}{−}{\color{mathred}{x}}\color{mathred}{\right)}\color{mathred}{−}{\color{mathred}{x}}\color{mathred}{\left(}\mathrm{\color{mathred}{5}}\color{mathred}{−}{\color{mathred}{x}}\color{mathred}{\right)}^{\mathrm{\color{mathred}{2}}} \\ $$ $${\color{mathred}{f}}\color{mathred}{\left(}{\color{mathred}{x}}\color{mathred}{\right)}\color{mathred}{=}\color{mathred}{\:}\mathrm{\color{mathred}{3}\color{mathred}{5}}\color{mathred}{−}\mathrm{\color{mathred}{7}}{\color{mathred}{x}}\color{mathred}{−}{\color{mathred}{x}}\color{mathred}{\left(}{\color{mathred}{x}}^{\mathrm{\color{mathred}{2}}} \color{mathred}{−}\mathrm{\color{mathred}{1}\color{mathred}{0}}{\color{mathred}{x}}\color{mathred}{+}\mathrm{\color{mathred}{2}\color{mathred}{5}}\color{mathred}{\right)} \\ $$ $${\color{mathred}{f}}\color{mathred}{\left(}{\color{mathred}{x}}\color{mathred}{\right)}\color{mathred}{=}\color{mathred}{−}{\color{mathred}{x}}^{\mathrm{\color{mathred}{3}}} \color{mathred}{+}\mathrm{\color{mathred}{1}\color{mathred}{0}}{\color{mathred}{x}}^{\mathrm{\color{mathred}{2}}} \color{mathred}{−}\mathrm{\color{mathred}{3}\color{mathred}{2}}{\color{mathred}{x}}\color{mathred}{+}\mathrm{\color{mathred}{3}\color{mathred}{5}}\color{mathred}{\:} \\ $$ $$\frac{{\color{mathbrown}{d}\color{mathbrown}{f}}}{{\color{mathbrown}{d}\color{mathbrown}{x}}}\color{mathbrown}{\:}\color{mathbrown}{=}\color{mathbrown}{\:}\color{mathbrown}{−}\mathrm{\color{mathbrown}{3}}{\color{mathbrown}{x}}^{\mathrm{\color{mathbrown}{2}}} \color{mathbrown}{+}\mathrm{\color{mathbrown}{2}\color{mathbrown}{0}}{\color{mathbrown}{x}}\color{mathbrown}{−}\mathrm{\color{mathbrown}{3}\color{mathbrown}{2}}\color{mathbrown}{\:}\color{mathbrown}{=}\color{mathbrown}{\:}\mathrm{\color{mathbrown}{0}} \\ $$ $${\color{mathbrown}{w}\color{mathbrown}{e}}\color{mathbrown}{\:}{\color{mathbrown}{g}\color{mathbrown}{e}\color{mathbrown}{t}}\color{mathbrown}{\:}\begin{cases}{{\color{mathbrown}{x}}\color{mathbrown}{=}\frac{\mathrm{\color{mathbrown}{8}}}{\mathrm{\color{mathbrown}{3}}}}\\{{\color{mathbrown}{x}}\color{mathbrown}{=}\mathrm{\color{mathbrown}{4}}}\end{cases} \\ $$ $$\color{mathbrown}{\:}\frac{{\color{mathbrown}{d}}^{\mathrm{\color{mathbrown}{2}}} {\color{mathbrown}{f}}}{{\color{mathbrown}{d}\color{mathbrown}{x}}^{\mathrm{\color{mathbrown}{2}}} }\color{mathbrown}{\:}\color{mathbrown}{=}\color{mathbrown}{\:}\color{mathbrown}{−}\mathrm{\color{mathbrown}{6}}{\color{mathbrown}{x}}\color{mathbrown}{+}\mathrm{\color{mathbrown}{2}\color{mathbrown}{0}}\color{mathbrown}{\mid}_{{\color{mathbrown}{x}}\color{mathbrown}{=}\color{mathbrown}{\:}\mathrm{\color{mathbrown}{4}}} \color{mathbrown}{<}\mathrm{\color{mathbrown}{0}}\color{mathbrown}{\:}\color{mathbrown}{\:}{\color{mathbrown}{a}\color{mathbrown}{n}\color{mathbrown}{d}}\color{mathbrown}{\:} \\ $$ $$\frac{{\color{mathbrown}{d}}^{\mathrm{\color{mathbrown}{2}}} {\color{mathbrown}{f}}}{{\color{mathbrown}{d}\color{mathbrown}{x}}^{\mathrm{\color{mathbrown}{2}}} }\color{mathbrown}{\:}\color{mathbrown}{=}\color{mathbrown}{\:}\color{mathbrown}{−}\mathrm{\color{mathbrown}{6}}{\color{mathbrown}{x}}\color{mathbrown}{+}\mathrm{\color{mathbrown}{2}\color{mathbrown}{0}}\color{mathbrown}{\mid}_{{\color{mathbrown}{x}}\color{mathbrown}{\:}\color{mathbrown}{=}\color{mathbrown}{\:}\frac{\mathrm{\color{mathbrown}{8}}}{\mathrm{\color{mathbrown}{3}}}} \color{mathbrown}{=}\color{mathbrown}{\:}\color{mathbrown}{−}\frac{\mathrm{\color{mathbrown}{4}\color{mathbrown}{8}}}{\mathrm{\color{mathbrown}{3}}}\color{mathbrown}{+}\mathrm{\color{mathbrown}{2}\color{mathbrown}{0}}\color{mathbrown}{\:}\color{mathbrown}{>}\mathrm{\color{mathbrown}{0}}\color{mathbrown}{\:} \\ $$ $${\color{mathbrown}{s}\color{mathbrown}{o}}\color{mathbrown}{\:}{\color{mathbrown}{f}}\color{mathbrown}{\left(}{\color{mathbrown}{x}}\color{mathbrown}{\right)}_{{\color{mathbrown}{m}\color{mathbrown}{a}\color{mathbrown}{x}}} \color{mathbrown}{\:}{\color{mathbrown}{f}\color{mathbrown}{o}\color{mathbrown}{r}}\color{mathbrown}{\:}{\color{mathbrown}{x}}\color{mathbrown}{\:}\color{mathbrown}{=}\color{mathbrown}{\:}\mathrm{\color{mathbrown}{4}}\color{mathbrown}{\:}{\color{mathbrown}{a}\color{mathbrown}{n}\color{mathbrown}{d}}\color{mathbrown}{\:}{\color{mathbrown}{f}}\color{mathbrown}{\left(}{\color{mathbrown}{x}}\color{mathbrown}{\right)}_{{\color{mathbrown}{m}\color{mathbrown}{i}\color{mathbrown}{n}}\color{mathbrown}{\:}} {\color{mathbrown}{f}\color{mathbrown}{o}\color{mathbrown}{r}}\color{mathbrown}{\:}{\color{mathbrown}{x}}\color{mathbrown}{=}\frac{\mathrm{\color{mathbrown}{8}}}{\mathrm{\color{mathbrown}{3}}} \\ $$ $$\color{mathred}{\therefore}\color{mathred}{\:}{\color{mathred}{m}\color{mathred}{a}\color{mathred}{x}}\color{mathred}{\:}{\color{mathred}{v}\color{mathred}{a}\color{mathred}{l}\color{mathred}{u}\color{mathred}{e}}\color{mathred}{\:}{\color{mathred}{i}\color{mathred}{s}}\color{mathred}{\:}{\color{mathred}{f}}\color{mathred}{\left(}\mathrm{\color{mathred}{4}}\color{mathred}{\right)}\color{mathred}{=}\color{mathred}{−}\mathrm{\color{mathred}{4}}^{\mathrm{\color{mathred}{3}}} \color{mathred}{+}\mathrm{\color{mathred}{1}\color{mathred}{0}}\color{mathred}{.}\mathrm{\color{mathred}{4}}^{\mathrm{\color{mathred}{2}}} \color{mathred}{−}\mathrm{\color{mathred}{3}\color{mathred}{2}}\color{mathred}{.}\mathrm{\color{mathred}{4}}\color{mathred}{+}\mathrm{\color{mathred}{3}\color{mathred}{5}}\color{mathred}{\:} \\ $$ $${\color{mathred}{f}}\color{mathred}{\left(}\mathrm{\color{mathred}{4}}\color{mathred}{\right)}\color{mathred}{=}\color{mathred}{\:}\color{mathred}{−}\mathrm{\color{mathred}{6}\color{mathred}{4}}\color{mathred}{+}\mathrm{\color{mathred}{1}\color{mathred}{6}\color{mathred}{0}}\color{mathred}{−}\mathrm{\color{mathred}{1}\color{mathred}{2}\color{mathred}{8}}\color{mathred}{+}\mathrm{\color{mathred}{3}\color{mathred}{5}}\color{mathred}{\:}\color{mathred}{=}\color{mathred}{\:}\mathrm{\color{mathred}{3}} \\ $$ $${when}\:{a}+{b}=\mathrm{4}\:{and}\:{c}\:=\:\mathrm{1}\:.\:{from}\:{eq}\left(\mathrm{2}\right) \\ $$ $${ab}+{ac}+{bc}\:=\:\mathrm{7}\Rightarrow{ab}+{a}+{b}\:=\:\mathrm{7}\:;\: \\ $$ $${ab}\:=\:\mathrm{3}\:\wedge{b}\:=\:\mathrm{4}−{a}\:;\:{we}\:{get}\:{a}\left(\mathrm{4}−{a}\right)=\mathrm{3} \\ $$ $${a}^{\mathrm{2}} −\mathrm{4}{a}+\mathrm{3}\:=\:\mathrm{0}\:\rightarrow\begin{cases}{{a}=\mathrm{1}\rightarrow{b}=\mathrm{3}\:{or}}\\{{a}=\mathrm{3}\rightarrow{b}=\mathrm{1}\:}\end{cases} \\ $$ $$\left({a},{b},{c}\right)\:=\:\left(\mathrm{1},\mathrm{3},\mathrm{1}\right)\:{or}\:\left(\mathrm{3},\mathrm{1},\mathrm{1}\right) \\ $$ $${clearly}\:{max}\:{is}\:{f}\left(\mathrm{4}\right)\:=\:\mathrm{3} \\ $$ $${min}\:{value}\:{is}\:{f}\left(\frac{\mathrm{8}}{\mathrm{3}}\right)=−\left(\frac{\mathrm{8}}{\mathrm{3}}\right)^{\mathrm{3}} +\mathrm{10}\left(\frac{\mathrm{8}}{\mathrm{3}}\right)^{\mathrm{2}} −\mathrm{32}\left(\frac{\mathrm{8}}{\mathrm{3}}\right)+\mathrm{35} \\ $$ $$ \\ $$ | ||
Commented bymr W last updated on 08/Mar/21 | ||
![]() | ||
$${very}\:{nice}!\:{i}\:{used}\:{also}\:{similar}\:{method},\: \\ $$ $${but}\:{maybe}\:{made}\:{a}\:{calculation}\:{mistake} \\ $$ $${somewhere}. \\ $$ | ||
Answered by liberty last updated on 07/Mar/21 | ||
![]() | ||
$$\left(\mathrm{1}\right){a}=\mathrm{5}−\left({b}+{c}\right)\:\left(\mathrm{2}\right)\:\left(\mathrm{5}−\left({b}+{c}\right)\right){b}+{bc}+{c}\left(\mathrm{5}−\left({b}+{c}\right)\right)=\mathrm{7} \\ $$ $$\Rightarrow\:\mathrm{5}{b}−{b}^{\mathrm{2}} −{bc}+{bc}+\mathrm{5}{c}−{bc}−{c}^{\mathrm{2}} =\mathrm{7} \\ $$ $$\Rightarrow\mathrm{5}{b}−{b}^{\mathrm{2}} −{bc}+\mathrm{5}{c}+{c}^{\mathrm{2}} \:=\:\mathrm{7} \\ $$ $$\left(\mathrm{3}\right){abc}\:=\:\left(\mathrm{5}−\left({b}+{c}\right)\right){bc}\:=\mathrm{5}{bc}−{b}^{\mathrm{2}} {c}−{bc}^{\mathrm{2}} \\ $$ $${let}\:{f}\left({b},{c}\right)=\mathrm{5}{bc}−{b}^{\mathrm{2}} {c}−{bc}^{\mathrm{2}} +\lambda\left(\mathrm{5}{b}−{b}^{\mathrm{2}} −{bc}+\mathrm{5}{c}+{c}^{\mathrm{2}} −\mathrm{7}\right) \\ $$ $$\color{mathblue}{\left(}{\color{mathblue}{i}}\color{mathblue}{\right)}\color{mathblue}{\:}{\color{mathblue}{f}}_{{\color{mathblue}{b}}} \color{mathblue}{=}\color{mathblue}{\:}\mathrm{\color{mathblue}{5}}{\color{mathblue}{c}}\color{mathblue}{−}\mathrm{\color{mathblue}{2}}{\color{mathblue}{b}\color{mathblue}{c}}\color{mathblue}{−}{\color{mathblue}{c}}^{\mathrm{\color{mathblue}{2}}} \color{mathblue}{+}\color{mathblue}{\lambda}\color{mathblue}{\left(}\mathrm{\color{mathblue}{5}}\color{mathblue}{−}\mathrm{\color{mathblue}{2}}{\color{mathblue}{b}}\color{mathblue}{−}{\color{mathblue}{c}}\color{mathblue}{\right)}\color{mathblue}{=}\mathrm{\color{mathblue}{0}} \\ $$ $$\color{mathblue}{\left(}{\color{mathblue}{i}\color{mathblue}{i}}\color{mathblue}{\right)}{\color{mathblue}{f}}_{{\color{mathblue}{c}}} \color{mathblue}{=}\color{mathblue}{\:}\mathrm{\color{mathblue}{5}}{\color{mathblue}{b}}\color{mathblue}{−}{\color{mathblue}{b}}^{\mathrm{\color{mathblue}{2}}} \color{mathblue}{−}\mathrm{\color{mathblue}{2}}{\color{mathblue}{b}\color{mathblue}{c}}\color{mathblue}{+}\color{mathblue}{\lambda}\color{mathblue}{\left(}\color{mathblue}{−}{\color{mathblue}{b}}\color{mathblue}{+}\mathrm{\color{mathblue}{5}}\color{mathblue}{+}\mathrm{\color{mathblue}{2}}{\color{mathblue}{c}}\color{mathblue}{\right)}\color{mathblue}{=}\color{mathblue}{\:}\mathrm{\color{mathblue}{0}} \\ $$ $$\color{mathblue}{\left(}{\color{mathblue}{i}\color{mathblue}{i}\color{mathblue}{i}}\color{mathblue}{\right)}{\color{mathblue}{f}}_{\color{mathblue}{\lambda}\color{mathblue}{\:}} \color{mathblue}{=}\color{mathblue}{\:}\mathrm{\color{mathblue}{5}}{\color{mathblue}{b}}\color{mathblue}{−}{\color{mathblue}{b}}^{\mathrm{\color{mathblue}{2}}} \color{mathblue}{−}{\color{mathblue}{b}\color{mathblue}{c}}\color{mathblue}{+}\mathrm{\color{mathblue}{5}}{\color{mathblue}{c}}\color{mathblue}{+}{\color{mathblue}{c}}^{\mathrm{\color{mathblue}{2}}} \color{mathblue}{\:}\color{mathblue}{=}\color{mathblue}{\:}\mathrm{\color{mathblue}{7}} \\ $$ $${\color{mathbrown}{f}\color{mathbrown}{r}\color{mathbrown}{o}\color{mathbrown}{m}}\color{mathbrown}{\:}{\color{mathbrown}{e}\color{mathbrown}{q}}\color{mathbrown}{\:}\color{mathbrown}{\left(}{\color{mathbrown}{i}}\color{mathbrown}{\right)}\color{mathbrown}{\:}\&\color{mathbrown}{\left(}{\color{mathbrown}{i}\color{mathbrown}{i}}\color{mathbrown}{\right)}\color{mathbrown}{\:}{\color{mathbrown}{w}\color{mathbrown}{e}}\color{mathbrown}{\:}{\color{mathbrown}{g}\color{mathbrown}{e}\color{mathbrown}{t}}\color{mathbrown}{\:}\begin{cases}{\color{mathbrown}{\lambda}\color{mathbrown}{=}\frac{{\color{mathbrown}{c}}^{\mathrm{\color{mathbrown}{2}}} \color{mathbrown}{+}\mathrm{\color{mathbrown}{2}}{\color{mathbrown}{b}\color{mathbrown}{c}}\color{mathbrown}{−}\mathrm{\color{mathbrown}{5}}{\color{mathbrown}{c}}}{\mathrm{\color{mathbrown}{5}}\color{mathbrown}{−}\mathrm{\color{mathbrown}{2}}{\color{mathbrown}{b}}\color{mathbrown}{−}{\color{mathbrown}{c}}}}\\{\color{mathbrown}{\lambda}\color{mathbrown}{\:}\color{mathbrown}{=}\color{mathbrown}{\:}\frac{{\color{mathbrown}{b}}^{\mathrm{\color{mathbrown}{2}}} \color{mathbrown}{+}\mathrm{\color{mathbrown}{2}}{\color{mathbrown}{b}\color{mathbrown}{c}}\color{mathbrown}{−}\mathrm{\color{mathbrown}{5}}{\color{mathbrown}{b}}}{\mathrm{\color{mathbrown}{5}}\color{mathbrown}{−}{\color{mathbrown}{b}}\color{mathbrown}{+}\mathrm{\color{mathbrown}{2}}{\color{mathbrown}{c}}}}\end{cases} \\ $$ $${\color{mathbrown}{a}\color{mathbrown}{n}\color{mathbrown}{d}}\color{mathbrown}{\:}{\color{mathbrown}{b}}^{\mathrm{\color{mathbrown}{2}}} \color{mathbrown}{−}\mathrm{\color{mathbrown}{5}}{\color{mathbrown}{b}}\color{mathbrown}{\:}\color{mathbrown}{=}\color{mathbrown}{\:}{\color{mathbrown}{c}}^{\mathrm{\color{mathbrown}{2}}} \color{mathbrown}{+}\mathrm{\color{mathbrown}{5}}{\color{mathbrown}{c}}\color{mathbrown}{−}{\color{mathbrown}{b}\color{mathbrown}{c}}\color{mathbrown}{−}\mathrm{\color{mathbrown}{7}} \\ $$ $$\color{mathred}{\Rightarrow}\color{mathred}{\:}\color{mathred}{\lambda}\color{mathred}{\:}\color{mathred}{=}\color{mathred}{\:}\color{mathred}{\lambda}\color{mathred}{\:}\color{mathred}{;}\color{mathred}{\:}\frac{{\color{mathred}{c}}^{\mathrm{\color{mathred}{2}}} \color{mathred}{+}\mathrm{\color{mathred}{2}}{\color{mathred}{b}\color{mathred}{c}}\color{mathred}{−}\mathrm{\color{mathred}{5}}{\color{mathred}{c}}}{\mathrm{\color{mathred}{5}}\color{mathred}{−}\mathrm{\color{mathred}{2}}{\color{mathred}{b}}\color{mathred}{−}{\color{mathred}{c}}}\color{mathred}{\:}\color{mathred}{=}\color{mathred}{\:}\frac{{\color{mathred}{c}}^{\mathrm{\color{mathred}{2}}} \color{mathred}{+}\mathrm{\color{mathred}{5}}{\color{mathred}{c}}\color{mathred}{−}{\color{mathred}{b}\color{mathred}{c}}\color{mathred}{−}\mathrm{\color{mathred}{7}}\color{mathred}{+}\mathrm{\color{mathred}{2}}{\color{mathred}{b}\color{mathred}{c}}}{\mathrm{\color{mathred}{5}}\color{mathred}{−}{\color{mathred}{b}}\color{mathred}{+}\mathrm{\color{mathred}{2}}{\color{mathred}{c}}} \\ $$ $${\color{mathred}{n}\color{mathred}{e}\color{mathred}{x}\color{mathred}{t}}\color{mathred}{.}\color{mathred}{.}\color{mathred}{.} \\ $$ | ||
Answered by mr W last updated on 08/Mar/21 | ||
![]() | ||
$${c}=\mathrm{5}−\left({a}+{b}\right) \\ $$ $${ab}+\left({a}+{b}\right){c}=\mathrm{7} \\ $$ $${c}=\frac{\mathrm{7}−{ab}}{{a}+{b}}=\mathrm{5}−\left({a}+{b}\right) \\ $$ $$\Rightarrow{ab}=\mathrm{7}−\left({a}+{b}\right)\left(\mathrm{5}−\left({a}+{b}\right)\right) \\ $$ $${P}={abc}={ab}\left(\mathrm{5}−\left({a}+{b}\right)\right)=\left[\mathrm{7}−\left({a}+{b}\right)\left(\mathrm{5}−\left({a}+{b}\right)\right)\right]\left(\mathrm{5}−\left({a}+{b}\right)\right) \\ $$ $${let}\:{t}={a}+{b} \\ $$ $$\Rightarrow{P}=\left[\mathrm{7}−{t}\left(\mathrm{5}−{t}\right)\right]\left(\mathrm{5}−{t}\right)=−{t}^{\mathrm{3}} +\mathrm{10}{t}^{\mathrm{2}} −\mathrm{32}{t}+\mathrm{35} \\ $$ $$\frac{{dP}}{{dt}}=−\mathrm{3}{t}^{\mathrm{2}} +\mathrm{20}{t}−\mathrm{32}=\mathrm{0} \\ $$ $$\left(\mathrm{3}{t}−\mathrm{8}\right)\left({t}−\mathrm{4}\right)=\mathrm{0} \\ $$ $$\Rightarrow{t}=\frac{\mathrm{8}}{\mathrm{3}},\:\mathrm{4} \\ $$ $$\frac{{d}^{\mathrm{2}} {P}}{{dt}^{\mathrm{2}} }=−\mathrm{6}{t}+\mathrm{20} \\ $$ $${at}\:{t}=\frac{\mathrm{8}}{\mathrm{3}}:\:\frac{{d}^{\mathrm{2}} {P}}{{dt}^{\mathrm{2}} }=−\mathrm{6}×\frac{\mathrm{8}}{\mathrm{3}}+\mathrm{20}=\mathrm{4}>\mathrm{0}\:\Rightarrow{min}. \\ $$ $${at}\:{t}=\mathrm{4}:\:\frac{{d}^{\mathrm{2}} {P}}{{dt}^{\mathrm{2}} }=−\mathrm{6}×\mathrm{4}+\mathrm{20}=−\mathrm{4}<\mathrm{0}\:\Rightarrow{max}. \\ $$ $$\Rightarrow{P}_{{min}} =\left[\mathrm{7}−\frac{\mathrm{8}}{\mathrm{3}}\left(\mathrm{5}−\frac{\mathrm{8}}{\mathrm{3}}\right)\right]\left(\mathrm{5}−\frac{\mathrm{8}}{\mathrm{3}}\right)=\frac{\mathrm{49}}{\mathrm{27}} \\ $$ $$\Rightarrow{P}_{{max}} =\left[\mathrm{7}−\mathrm{4}\left(\mathrm{5}−\mathrm{4}\right)\right]\left(\mathrm{5}−\mathrm{4}\right)=\mathrm{3} \\ $$ | ||
Answered by ajfour last updated on 08/Mar/21 | ||
![]() | ||
$${x}^{\mathrm{3}} −\mathrm{5}{x}^{\mathrm{2}} +\mathrm{7}{x}−{m}=\mathrm{0} \\ $$ $${where} \\ $$ $${a}+{b}+{c}=\mathrm{5} \\ $$ $${ab}+{bc}+{ca}=\mathrm{7} \\ $$ $${abc}={m} \\ $$ $${m}={x}^{\mathrm{3}} −\mathrm{5}{x}^{\mathrm{2}} +\mathrm{7}{x} \\ $$ $$\frac{{dm}}{{dx}}=\mathrm{3}{x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{7} \\ $$ $${x}=\frac{\mathrm{10}\pm\sqrt{\mathrm{100}−\mathrm{84}}}{\mathrm{6}} \\ $$ $${x}=\frac{\mathrm{10}\pm\mathrm{4}}{\mathrm{6}}\:\:\Rightarrow\:\:{x}=\mathrm{1},\:\frac{\mathrm{7}}{\mathrm{3}} \\ $$ $${for}\:{x}=\mathrm{1},\:\:{m}=\mathrm{3} \\ $$ $${for}\:\:{x}=\frac{\mathrm{7}}{\mathrm{3}}\:\:,{m}=\frac{\mathrm{49}}{\mathrm{27}} \\ $$ $${hence}\:\left({abc}\right)_{{max}} =\:{m}_{{max}} =\mathrm{3} \\ $$ $$ \\ $$ $$ \\ $$ | ||
Commented bymr W last updated on 09/Mar/21 | ||
![]() | ||
$${nice}\:{idea}! \\ $$ | ||
Commented byajfour last updated on 09/Mar/21 | ||
![]() | ||
$${thanks}\:{sir},\:{m}\:{little}\:{shaken}\:{by} \\ $$ $${circumstances},\:{n}\:{anyway}\:{taken} \\ $$ $${to}\:{watching}\:{Utube}\:{movies}\:{n} \\ $$ $${music},\:{cant}\:{focus}\:{here}\:{like}\:{i} \\ $$ $${used}\:{to},\:{lets}\:{see}\:{how}\:{long};\:{I}\:{m} \\ $$ $${so}\:{very}\:{unpredictable}\:{even}\:{to} \\ $$ $${myself}... \\ $$ | ||
Commented bymr W last updated on 09/Mar/21 | ||
![]() | ||
$${take}\:{best}\:{care}\:{of}\:{yourself}\:{sir}! \\ $$ | ||