Question Number 134798 by bramlexs22 last updated on 07/Mar/21 | ||
$$\mathrm{Binomial}\:\mathrm{theorem} \\ $$ Given that the coefficient of x^2 in the expansion of (1+ax) (3-2 x) ^5 is 1440, what is the value of the constant a?\\n | ||
Answered by Ñï= last updated on 07/Mar/21 | ||
$$\begin{pmatrix}{\mathrm{5}}\\{\mathrm{2}}\end{pmatrix}\left(−\mathrm{2}{x}\right)^{\mathrm{2}} \mathrm{3}^{\mathrm{3}} +{ax}\begin{pmatrix}{\mathrm{5}}\\{\mathrm{1}}\end{pmatrix}\left(−\mathrm{2}{x}\right)\mathrm{3}^{\mathrm{4}} =\mathrm{10}\left(\mathrm{108}−\mathrm{81}{a}\right){x}^{\mathrm{2}} \\ $$ $$\mathrm{10}\left(\mathrm{108}−\mathrm{81}{a}\right)=\mathrm{1440} \\ $$ $$\Rightarrow{a}=−\frac{\mathrm{4}}{\mathrm{9}} \\ $$ | ||
Answered by liberty last updated on 07/Mar/21 | ||
$${We}\:{can}\:{find}\:{the}\:{coefficient}\:{of}\:{x}^{\mathrm{2}} \\ $$ $${for}\:{f}\left({x}\right)=\:\left(\mathrm{1}+{ax}\right)\left(\mathrm{3}−\mathrm{2}{x}\right)^{\mathrm{5}} \\ $$ $${by}\:{taking}\:\frac{{f}\:''\left(\mathrm{0}\right)}{\mathrm{2}!} \\ $$ $$\color{mathblue}{\left(}\color{mathblue}{\bullet}\color{mathblue}{\right)}\color{mathblue}{\:}{\color{mathblue}{f}}\color{mathblue}{\left(}{\color{mathblue}{x}}\color{mathblue}{\right)}\color{mathblue}{=}\color{mathblue}{\:}\color{mathblue}{\left(}\mathrm{\color{mathblue}{1}}\color{mathblue}{+}{\color{mathblue}{a}\color{mathblue}{x}}\color{mathblue}{\right)}\color{mathblue}{\left(}\mathrm{\color{mathblue}{3}}\color{mathblue}{−}\mathrm{\color{mathblue}{2}}{\color{mathblue}{x}}\color{mathblue}{\right)}^{\mathrm{\color{mathblue}{5}}} \\ $$ $$\color{mathblue}{\:}{\color{mathblue}{f}}\color{mathblue}{\:}\color{mathblue}{'}\color{mathblue}{\left(}{\color{mathblue}{x}}\color{mathblue}{\right)}\color{mathblue}{=}{\color{mathblue}{a}}\color{mathblue}{\left(}\mathrm{\color{mathblue}{3}}\color{mathblue}{−}\mathrm{\color{mathblue}{2}}{\color{mathblue}{x}}\color{mathblue}{\right)}^{\mathrm{\color{mathblue}{5}}} \color{mathblue}{−}\mathrm{\color{mathblue}{1}\color{mathblue}{0}}\color{mathblue}{\left(}\mathrm{\color{mathblue}{1}}\color{mathblue}{+}{\color{mathblue}{a}\color{mathblue}{x}}\color{mathblue}{\right)}\color{mathblue}{\left(}\mathrm{\color{mathblue}{3}}\color{mathblue}{−}\mathrm{\color{mathblue}{2}}{\color{mathblue}{x}}\color{mathblue}{\right)}^{\mathrm{\color{mathblue}{4}}} \\ $$ $$\color{mathblue}{\:}{\color{mathblue}{f}}\color{mathblue}{\:}\color{mathblue}{'}\color{mathblue}{\left(}{\color{mathblue}{x}}\color{mathblue}{\right)}\color{mathblue}{=}\color{mathblue}{\left(}\mathrm{\color{mathblue}{3}}\color{mathblue}{−}\mathrm{\color{mathblue}{2}}{\color{mathblue}{x}}\color{mathblue}{\right)}^{\mathrm{\color{mathblue}{4}}} \color{mathblue}{\:}\color{mathblue}{\left[}\color{mathblue}{\:}\mathrm{\color{mathblue}{3}}{\color{mathblue}{a}}\color{mathblue}{−}\mathrm{\color{mathblue}{2}}{\color{mathblue}{a}\color{mathblue}{x}}\color{mathblue}{−}\mathrm{\color{mathblue}{1}\color{mathblue}{0}}\color{mathblue}{−}\mathrm{\color{mathblue}{1}\color{mathblue}{0}}{\color{mathblue}{a}\color{mathblue}{x}}\color{mathblue}{\:}\color{mathblue}{\right]} \\ $$ $${\color{mathblue}{f}}\color{mathblue}{\:}\color{mathblue}{'}\color{mathblue}{\left(}{\color{mathblue}{x}}\color{mathblue}{\right)}\color{mathblue}{=}\color{mathblue}{\left(}\mathrm{\color{mathblue}{3}}\color{mathblue}{−}\mathrm{\color{mathblue}{2}}{\color{mathblue}{x}}\color{mathblue}{\right)}^{\mathrm{\color{mathblue}{4}}} \color{mathblue}{\left(}\color{mathblue}{−}\mathrm{\color{mathblue}{1}\color{mathblue}{2}}{\color{mathblue}{a}\color{mathblue}{x}}\color{mathblue}{+}\mathrm{\color{mathblue}{3}}{\color{mathblue}{a}}\color{mathblue}{−}\mathrm{\color{mathblue}{1}\color{mathblue}{0}}\color{mathblue}{\right)} \\ $$ $$ \\ $$ $$\color{mathblue}{\left(}\color{mathblue}{\bullet}\color{mathblue}{\bullet}\color{mathblue}{\right)}\color{mathblue}{\:}{\color{mathbrown}{f}}\color{mathbrown}{\:}\color{mathbrown}{'}\color{mathbrown}{'}\color{mathbrown}{\left(}{\color{mathbrown}{x}}\color{mathbrown}{\right)}\color{mathbrown}{=}\color{mathbrown}{−}\mathrm{\color{mathbrown}{1}\color{mathbrown}{2}}{\color{mathbrown}{a}}\color{mathbrown}{\left(}\mathrm{\color{mathbrown}{3}}\color{mathbrown}{−}\mathrm{\color{mathbrown}{2}}{\color{mathbrown}{x}}\color{mathbrown}{\right)}^{\mathrm{\color{mathbrown}{4}}} \color{mathbrown}{−}\mathrm{\color{mathbrown}{8}}\color{mathbrown}{\left(}\mathrm{\color{mathbrown}{3}}\color{mathbrown}{−}\mathrm{\color{mathbrown}{2}}{\color{mathbrown}{x}}\color{mathbrown}{\right)}^{\mathrm{\color{mathbrown}{3}}} \color{mathbrown}{\left(}\color{mathbrown}{−}\mathrm{\color{mathbrown}{1}\color{mathbrown}{2}}{\color{mathbrown}{a}\color{mathbrown}{x}}\color{mathbrown}{+}\mathrm{\color{mathbrown}{3}}{\color{mathbrown}{a}}\color{mathbrown}{−}\mathrm{\color{mathbrown}{1}\color{mathbrown}{0}}\color{mathbrown}{\right)} \\ $$ $$\color{mathbrown}{\:}{\color{mathbrown}{f}}\color{mathbrown}{\:}\color{mathbrown}{'}\color{mathbrown}{'}\color{mathbrown}{\left(}\mathrm{\color{mathbrown}{0}}\color{mathbrown}{\right)}\color{mathbrown}{\:}\color{mathbrown}{=}\color{mathbrown}{\:}\color{mathbrown}{−}\mathrm{\color{mathbrown}{1}\color{mathbrown}{2}}{\color{mathbrown}{a}}\color{mathbrown}{\left(}\mathrm{\color{mathbrown}{8}\color{mathbrown}{1}}\color{mathbrown}{\right)}\color{mathbrown}{−}\mathrm{\color{mathbrown}{8}}\color{mathbrown}{\left(}\mathrm{\color{mathbrown}{2}\color{mathbrown}{7}}\color{mathbrown}{\right)}\color{mathbrown}{\left(}\mathrm{\color{mathbrown}{3}}{\color{mathbrown}{a}}−\mathrm{\color{mathbrown}{1}\color{mathbrown}{0}}\color{mathbrown}{\right)} \\ $$ $$\color{mathbrown}{\:}\frac{{\color{mathbrown}{f}}\color{mathbrown}{\:}\color{mathbrown}{'}\color{mathbrown}{'}\color{mathbrown}{\left(}\mathrm{\color{mathbrown}{0}}\color{mathbrown}{\right)}}{\mathrm{\color{mathbrown}{2}}\color{mathbrown}{!}}\color{mathbrown}{\:}\color{mathbrown}{=}\color{mathbrown}{\:}\color{mathbrown}{−}\mathrm{\color{mathbrown}{6}}{\color{mathbrown}{a}}\color{mathbrown}{\left(}\mathrm{\color{mathbrown}{8}\color{mathbrown}{1}}\color{mathbrown}{\right)}\color{mathbrown}{−}\mathrm{\color{mathbrown}{4}}\color{mathbrown}{\left(}\mathrm{\color{mathbrown}{2}\color{mathbrown}{7}}\color{mathbrown}{\right)}\color{mathbrown}{\left(}\mathrm{\color{mathbrown}{3}}{\color{mathbrown}{a}}−\mathrm{\color{mathbrown}{1}\color{mathbrown}{0}}\color{mathbrown}{\right)}\color{mathbrown}{\:}\color{mathbrown}{=}\color{mathbrown}{\:}\mathrm{\color{mathbrown}{1}\color{mathbrown}{4}\color{mathbrown}{4}\color{mathbrown}{0}} \\ $$ $$\color{mathred}{\:}\color{mathred}{−}\mathrm{\color{mathred}{4}\color{mathred}{8}\color{mathred}{6}}{\color{mathred}{a}}\color{mathred}{−}\mathrm{\color{mathred}{3}\color{mathred}{2}\color{mathred}{4}}{\color{mathred}{a}}+\mathrm{\color{mathred}{1}\color{mathred}{0}\color{mathred}{8}\color{mathred}{0}}\color{mathred}{=}\mathrm{\color{mathred}{1}\color{mathred}{4}\color{mathred}{4}\color{mathred}{0}} \\ $$ $$\color{mathred}{−}\mathrm{\color{mathred}{8}\color{mathred}{1}\color{mathred}{0}}{\color{mathred}{a}}\color{mathred}{\:}\color{mathred}{=}\color{mathred}{\:}\mathrm{\color{mathred}{2}\color{mathred}{5}\color{mathred}{2}\color{mathred}{0}}\color{mathred}{\:}\color{mathred}{;}\color{mathred}{\:}{\color{mathred}{a}}\color{mathred}{\:}\color{mathred}{=}\color{mathred}{\:}\color{mathred}{−}\frac{\mathrm{360}}{\mathrm{\color{mathred}{8}\color{mathred}{1}\color{mathred}{0}}}\color{mathred}{\:}\color{mathred}{=}\color{mathred}{\:}\color{mathred}{−}\frac{\mathrm{4}}{\mathrm{\color{mathred}{9}}} \\ $$ | ||
Answered by mr W last updated on 07/Mar/21 | ||
$$\left(\mathrm{1}+{ax}\right)\left(\mathrm{3}−\mathrm{2}{x}\right)^{\mathrm{5}} =\left(\mathrm{1}+{ax}\right)\underset{{k}=\mathrm{0}} {\overset{\mathrm{5}} {\sum}}{C}_{{k}} ^{\mathrm{5}} \mathrm{3}^{\mathrm{5}−{k}} \left(−\mathrm{2}{x}\right)^{{k}} \\ $$ $$=\left(\mathrm{1}+{ax}\right)\underset{{k}=\mathrm{0}} {\overset{\mathrm{5}} {\sum}}{C}_{{k}} ^{\mathrm{5}} \mathrm{3}^{\mathrm{5}−{k}} \left(−\mathrm{2}\right)^{{k}} {x}^{{k}} \\ $$ $${coef}.\:{of}\:{x}^{\mathrm{2}} : \\ $$ $${C}_{\mathrm{2}} ^{\mathrm{5}} \mathrm{3}^{\mathrm{5}−\mathrm{2}} \left(−\mathrm{2}\right)^{\mathrm{2}} +{aC}_{\mathrm{1}} ^{\mathrm{5}} \mathrm{3}^{\mathrm{5}−\mathrm{1}} \left(−\mathrm{2}\right)^{\mathrm{1}} \\ $$ $$=\mathrm{1080}−\mathrm{810}{a}=\mathrm{1440} \\ $$ $$\Rightarrow{a}=−\frac{\mathrm{4}}{\mathrm{9}} \\ $$ | ||