Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 134719 by 0731619177 last updated on 06/Mar/21

Commented by Dwaipayan Shikari last updated on 06/Mar/21

π^(3/2) −((3π)/2).((Γ((5/3)))/(Γ((7/6))))

$$\pi^{\frac{\mathrm{3}}{\mathrm{2}}} −\frac{\mathrm{3}\pi}{\mathrm{2}}.\frac{\Gamma\left(\frac{\mathrm{5}}{\mathrm{3}}\right)}{\Gamma\left(\frac{\mathrm{7}}{\mathrm{6}}\right)} \\ $$

Answered by CutieJanab last updated on 06/Mar/21

please solve tbis

$${please}\:{solve}\:{tbis} \\ $$

Answered by Dwaipayan Shikari last updated on 06/Mar/21

(1/( (√π)))Σ_(n=0) ^∞ ((Γ(n+(1/2))Γ((1/2)))/(n!(2n+1)(3n+2)))     Γ(n+(1/2))Γ((1/2))=π((1/2))_n   =((2π)/( (√π)))Σ_(n=0) ^∞ ((((1/2))_n )/(n!(2n+1)))−((3π)/( (√π)))Σ_(n=0) ^∞ ((((1/2))_n )/((3n+2)n!))     =2(√π) ∫_0 ^1 (1/( (√(1−x^2 ))))dx−3(√π)∫_0 ^1 x(1−x^3 )^(−(1/2)) dx  =π^(3/2) −(√π)∫_0 ^1 u^(−(1/3)) (1−u)^(−(1/2)) du  =π^(3/2) −π.((Γ((1/2))Γ((2/3)))/(Γ((7/6))))=π^(3/2) −((3π)/2).((Γ((5/3)))/(Γ((7/6))))∼0.983

$$\frac{\mathrm{1}}{\:\sqrt{\pi}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{{n}!\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right)}\:\:\:\:\:\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\pi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} \\ $$$$=\frac{\mathrm{2}\pi}{\:\sqrt{\pi}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} }{{n}!\left(\mathrm{2}{n}+\mathrm{1}\right)}−\frac{\mathrm{3}\pi}{\:\sqrt{\pi}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} }{\left(\mathrm{3}{n}+\mathrm{2}\right){n}!}\:\:\: \\ $$$$=\mathrm{2}\sqrt{\pi}\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}−\mathrm{3}\sqrt{\pi}\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left(\mathrm{1}−{x}^{\mathrm{3}} \right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {dx} \\ $$$$=\pi^{\frac{\mathrm{3}}{\mathrm{2}}} −\sqrt{\pi}\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{−\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{1}−{u}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} {du} \\ $$$$=\pi^{\frac{\mathrm{3}}{\mathrm{2}}} −\pi.\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)}{\Gamma\left(\frac{\mathrm{7}}{\mathrm{6}}\right)}=\pi^{\frac{\mathrm{3}}{\mathrm{2}}} −\frac{\mathrm{3}\pi}{\mathrm{2}}.\frac{\Gamma\left(\frac{\mathrm{5}}{\mathrm{3}}\right)}{\Gamma\left(\frac{\mathrm{7}}{\mathrm{6}}\right)}\sim\mathrm{0}.\mathrm{983} \\ $$

Commented by 0731619177 last updated on 06/Mar/21

answer is wrong

$${answer}\:{is}\:{wrong}\: \\ $$

Commented by 0731619177 last updated on 06/Mar/21

Commented by 0731619177 last updated on 06/Mar/21

but answer is positive

$${but}\:{answer}\:{is}\:{positive} \\ $$

Commented by Dwaipayan Shikari last updated on 06/Mar/21

Sir!You have used ((2/3)−1)!  instead of ((5/3)−1)!

$${Sir}!{You}\:{have}\:{used}\:\left(\frac{\mathrm{2}}{\mathrm{3}}−\mathrm{1}\right)!\:\:{instead}\:{of}\:\left(\frac{\mathrm{5}}{\mathrm{3}}−\mathrm{1}\right)! \\ $$

Commented by Dwaipayan Shikari last updated on 06/Mar/21

Hahhahah.. Sir Power again..  😛

$${Hahhahah}..\:{Sir}\:{Power}\:{again}.. \\ $$😛

Terms of Service

Privacy Policy

Contact: info@tinkutara.com