Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 134596 by mohammad17 last updated on 05/Mar/21

Commented by mohammad17 last updated on 05/Mar/21

help me sir

$${help}\:{me}\:{sir} \\ $$

Answered by Olaf last updated on 05/Mar/21

a)  ∫_C (z+1)dz = ∫_0 ^1 (x+1+ix^2 )dx  = [(x^2 /2)+x+i(x^3 /3)]_0 ^1  = (3/2)+(i/3)  b)  ∫_C (x^2 +iy^3 )dz  = ∫_0 ^(√2) (rcos^2 (π/4)+ir^3 cos^3 (π/4))dr  = [(r^2 /4)+i(r^4 /(8(√2)))]_0 ^(√2)  = (1/2)+(i/( 2(√2)))  c)  ∫_C xdz = ∫_0 ^(2π) rcosθdθ = 0

$$\left.{a}\right) \\ $$$$\int_{\mathrm{C}} \left({z}+\mathrm{1}\right){dz}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}+\mathrm{1}+{ix}^{\mathrm{2}} \right){dx} \\ $$$$=\:\left[\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+{x}+{i}\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\:\frac{\mathrm{3}}{\mathrm{2}}+\frac{{i}}{\mathrm{3}} \\ $$$$\left.{b}\right) \\ $$$$\int_{\mathrm{C}} \left({x}^{\mathrm{2}} +{iy}^{\mathrm{3}} \right){dz} \\ $$$$=\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \left({r}\mathrm{cos}^{\mathrm{2}} \frac{\pi}{\mathrm{4}}+{ir}^{\mathrm{3}} \mathrm{cos}^{\mathrm{3}} \frac{\pi}{\mathrm{4}}\right){dr} \\ $$$$=\:\left[\frac{{r}^{\mathrm{2}} }{\mathrm{4}}+{i}\frac{{r}^{\mathrm{4}} }{\mathrm{8}\sqrt{\mathrm{2}}}\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}+\frac{{i}}{\:\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\left.{c}\right) \\ $$$$\int_{\mathrm{C}} {xdz}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} {r}\mathrm{cos}\theta{d}\theta\:=\:\mathrm{0} \\ $$

Commented by mohammad17 last updated on 05/Mar/21

sir why (x+ix^2 )replace z in (a)

$${sir}\:{why}\:\left({x}+{ix}^{\mathrm{2}} \right){replace}\:{z}\:{in}\:\left({a}\right) \\ $$

Commented by Olaf last updated on 05/Mar/21

because z = x+iy and y = x^2

$$\mathrm{because}\:{z}\:=\:{x}+{iy}\:\mathrm{and}\:{y}\:=\:{x}^{\mathrm{2}} \\ $$

Commented by mohammad17 last updated on 05/Mar/21

yes yes sir thank you

$${yes}\:{yes}\:{sir}\:{thank}\:{you}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com