Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 134327 by mr W last updated on 02/Mar/21

Answered by aleks041103 last updated on 25/Dec/21

i⇒∣z_k ^2 ∣=1  ⇒z_k =e^(it_k )   w_k =z_k ^2 =e^(2it_k )   ⇒w_1 +w_2 +w_3 =0  ⇒1+e^(2i(t_2 −t_1 )) +e^(2i(t_3 −t_1 )) =0  ⇒Im(e^(2i(t_2 −t_1 )) )=−Im(e^(2i(t_3 −t_1 )) )  ⇒t_2 −t_1 =t_1 −t_3   also  2(t_2 −t_1 )=((2π)/3)+2πm  ⇒t_2 −t_1 =(π/3)+mπ  ⇒t_3 −t_1 =pπ−(π/3)  ⇒z_2 =z_1 e^(i(t_2 −t_1 )) =z_1 e^(i(π/3)) e^(imπ) =±z_1 e^((iπ)/3)   z_3 =z_1 e^(i(t_3 −t_1 )) =z_1 e^(−((iπ)/3)) e^(ipπ) =±z_1 e^(−((iπ)/3))   z_1 +z_2 +z_3 =  =z_1 (1±e^((iπ)/3) ±e^(−((iπ)/3)) )≠0  ⇒1+s_1 ((1/2)+i((√3)/2))+s_2 ((1/2)−i((√3)/2))≠0  if −2=s_1 +s_2  and s_1 −s_2 =0 then z_1 +z_2 +z_3 =0  only when s_1 =s_2 =−1    Case 1:  z_1 , z_2 =−z_1 e^(iπ/3) =z_1 e^(4iπ/3) , z_3 =z_1 e^(−iπ/3)   ∣z_1 ^n +z_2 ^n +z_3 ^n ∣=∣z_1 ∣^n  ∣1+e^(4niπ/3) +e^(−niπ/3) ∣=  =∣1+e^(4niπ/3) +e^(−niπ/3) ∣  ....  the rest is trivial

$${i}\Rightarrow\mid{z}_{{k}} ^{\mathrm{2}} \mid=\mathrm{1} \\ $$$$\Rightarrow{z}_{{k}} ={e}^{{it}_{{k}} } \\ $$$${w}_{{k}} ={z}_{{k}} ^{\mathrm{2}} ={e}^{\mathrm{2}{it}_{{k}} } \\ $$$$\Rightarrow{w}_{\mathrm{1}} +{w}_{\mathrm{2}} +{w}_{\mathrm{3}} =\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}+{e}^{\mathrm{2}{i}\left({t}_{\mathrm{2}} −{t}_{\mathrm{1}} \right)} +{e}^{\mathrm{2}{i}\left({t}_{\mathrm{3}} −{t}_{\mathrm{1}} \right)} =\mathrm{0} \\ $$$$\Rightarrow{Im}\left({e}^{\mathrm{2}{i}\left({t}_{\mathrm{2}} −{t}_{\mathrm{1}} \right)} \right)=−{Im}\left({e}^{\mathrm{2}{i}\left({t}_{\mathrm{3}} −{t}_{\mathrm{1}} \right)} \right) \\ $$$$\Rightarrow{t}_{\mathrm{2}} −{t}_{\mathrm{1}} ={t}_{\mathrm{1}} −{t}_{\mathrm{3}} \\ $$$${also} \\ $$$$\mathrm{2}\left({t}_{\mathrm{2}} −{t}_{\mathrm{1}} \right)=\frac{\mathrm{2}\pi}{\mathrm{3}}+\mathrm{2}\pi{m} \\ $$$$\Rightarrow{t}_{\mathrm{2}} −{t}_{\mathrm{1}} =\frac{\pi}{\mathrm{3}}+{m}\pi \\ $$$$\Rightarrow{t}_{\mathrm{3}} −{t}_{\mathrm{1}} ={p}\pi−\frac{\pi}{\mathrm{3}} \\ $$$$\Rightarrow{z}_{\mathrm{2}} ={z}_{\mathrm{1}} {e}^{{i}\left({t}_{\mathrm{2}} −{t}_{\mathrm{1}} \right)} ={z}_{\mathrm{1}} {e}^{{i}\frac{\pi}{\mathrm{3}}} {e}^{{im}\pi} =\pm{z}_{\mathrm{1}} {e}^{\frac{{i}\pi}{\mathrm{3}}} \\ $$$${z}_{\mathrm{3}} ={z}_{\mathrm{1}} {e}^{{i}\left({t}_{\mathrm{3}} −{t}_{\mathrm{1}} \right)} ={z}_{\mathrm{1}} {e}^{−\frac{{i}\pi}{\mathrm{3}}} {e}^{{ip}\pi} =\pm{z}_{\mathrm{1}} {e}^{−\frac{{i}\pi}{\mathrm{3}}} \\ $$$${z}_{\mathrm{1}} +{z}_{\mathrm{2}} +{z}_{\mathrm{3}} = \\ $$$$={z}_{\mathrm{1}} \left(\mathrm{1}\pm{e}^{\frac{{i}\pi}{\mathrm{3}}} \pm{e}^{−\frac{{i}\pi}{\mathrm{3}}} \right)\neq\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}+{s}_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)+{s}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\neq\mathrm{0} \\ $$$${if}\:−\mathrm{2}={s}_{\mathrm{1}} +{s}_{\mathrm{2}} \:{and}\:{s}_{\mathrm{1}} −{s}_{\mathrm{2}} =\mathrm{0}\:{then}\:{z}_{\mathrm{1}} +{z}_{\mathrm{2}} +{z}_{\mathrm{3}} =\mathrm{0} \\ $$$${only}\:{when}\:{s}_{\mathrm{1}} ={s}_{\mathrm{2}} =−\mathrm{1} \\ $$$$ \\ $$$${Case}\:\mathrm{1}: \\ $$$${z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} =−{z}_{\mathrm{1}} {e}^{{i}\pi/\mathrm{3}} ={z}_{\mathrm{1}} {e}^{\mathrm{4}{i}\pi/\mathrm{3}} ,\:{z}_{\mathrm{3}} ={z}_{\mathrm{1}} {e}^{−{i}\pi/\mathrm{3}} \\ $$$$\mid{z}_{\mathrm{1}} ^{{n}} +{z}_{\mathrm{2}} ^{{n}} +{z}_{\mathrm{3}} ^{{n}} \mid=\mid{z}_{\mathrm{1}} \mid^{{n}} \:\mid\mathrm{1}+{e}^{\mathrm{4}{ni}\pi/\mathrm{3}} +{e}^{−{ni}\pi/\mathrm{3}} \mid= \\ $$$$=\mid\mathrm{1}+{e}^{\mathrm{4}{ni}\pi/\mathrm{3}} +{e}^{−{ni}\pi/\mathrm{3}} \mid \\ $$$$.... \\ $$$${the}\:{rest}\:{is}\:{trivial} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com