Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 134249 by abdurehime last updated on 01/Mar/21

Answered by mr W last updated on 01/Mar/21

Commented by mr W last updated on 01/Mar/21

1: stretched position  2: unstretched position of spring  3: rest position  ky=mgsin θ  ⇒y=((mgsin θ)/k)  at position 1:  E=mg(x+y)sin θ+(1/2)kx^2   at position 3:  E=(1/2)Iω^2 +(1/2)m(Rω)^2 +(1/2)ky^2     (1/2)Iω^2 +(1/2)m(Rω)^2 +(1/2)ky^2 =mg(x+y)sin θ+(1/2)kx^2   (I+mR^2 )ω^2 =2mgxsin θ+kx^2 +(((mgsin θ)^2 )/k)  ω=(√((2mgxsin θ+kx^2 +(((mgsin θ)^2 )/k))/(I+mR^2 )))  =(√((2×0.5×9.71×0.2×sin 37°+50×0.2^2 +(((0.5×9.81×sin 37°)^2 )/(50)))/(1+0.5×0.3^2 )))  =1.792 rad/s

$$\mathrm{1}:\:{stretched}\:{position} \\ $$$$\mathrm{2}:\:{unstretched}\:{position}\:{of}\:{spring} \\ $$$$\mathrm{3}:\:{rest}\:{position} \\ $$$${ky}={mg}\mathrm{sin}\:\theta \\ $$$$\Rightarrow{y}=\frac{{mg}\mathrm{sin}\:\theta}{{k}} \\ $$$${at}\:{position}\:\mathrm{1}: \\ $$$${E}={mg}\left({x}+{y}\right)\mathrm{sin}\:\theta+\frac{\mathrm{1}}{\mathrm{2}}{kx}^{\mathrm{2}} \\ $$$${at}\:{position}\:\mathrm{3}: \\ $$$${E}=\frac{\mathrm{1}}{\mathrm{2}}{I}\omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{m}\left({R}\omega\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{ky}^{\mathrm{2}} \\ $$$$ \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{I}\omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{m}\left({R}\omega\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{ky}^{\mathrm{2}} ={mg}\left({x}+{y}\right)\mathrm{sin}\:\theta+\frac{\mathrm{1}}{\mathrm{2}}{kx}^{\mathrm{2}} \\ $$$$\left({I}+{mR}^{\mathrm{2}} \right)\omega^{\mathrm{2}} =\mathrm{2}{mgx}\mathrm{sin}\:\theta+{kx}^{\mathrm{2}} +\frac{\left({mg}\mathrm{sin}\:\theta\right)^{\mathrm{2}} }{{k}} \\ $$$$\omega=\sqrt{\frac{\mathrm{2}{mgx}\mathrm{sin}\:\theta+{kx}^{\mathrm{2}} +\frac{\left({mg}\mathrm{sin}\:\theta\right)^{\mathrm{2}} }{{k}}}{{I}+{mR}^{\mathrm{2}} }} \\ $$$$=\sqrt{\frac{\mathrm{2}×\mathrm{0}.\mathrm{5}×\mathrm{9}.\mathrm{71}×\mathrm{0}.\mathrm{2}×\mathrm{sin}\:\mathrm{37}°+\mathrm{50}×\mathrm{0}.\mathrm{2}^{\mathrm{2}} +\frac{\left(\mathrm{0}.\mathrm{5}×\mathrm{9}.\mathrm{81}×\mathrm{sin}\:\mathrm{37}°\right)^{\mathrm{2}} }{\mathrm{50}}}{\mathrm{1}+\mathrm{0}.\mathrm{5}×\mathrm{0}.\mathrm{3}^{\mathrm{2}} }} \\ $$$$=\mathrm{1}.\mathrm{792}\:{rad}/{s} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com