Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 134122 by Ahmed1hamouda last updated on 28/Feb/21

Answered by TheSupreme last updated on 28/Feb/21

x=1+ρcos(θ)  y=ρsin(θ)  z=z  det(J)=ρ  E={(ρ,θ,z)∣0<θ<2π , 0<ρ<1, 0<z<ρsinθ}  ∫_0 ^(2π) ∫_0 ^1 ∫_0 ^(ρ sinθ) ρdzdρdθ=  2∫_0 ^π ∫_0 ^1 ρ^2 sinθdθdρ=  2[−cosθ]_0 ^π [(ρ^3 /3)]_0 ^1 =(4/3)

$${x}=\mathrm{1}+\rho{cos}\left(\theta\right) \\ $$$${y}=\rho{sin}\left(\theta\right) \\ $$$${z}={z} \\ $$$${det}\left({J}\right)=\rho \\ $$$${E}=\left\{\left(\rho,\theta,{z}\right)\mid\mathrm{0}<\theta<\mathrm{2}\pi\:,\:\mathrm{0}<\rho<\mathrm{1},\:\mathrm{0}<{z}<\rho{sin}\theta\right\} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\rho\:{sin}\theta} \rho{dzd}\rho{d}\theta= \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\pi} \int_{\mathrm{0}} ^{\mathrm{1}} \rho^{\mathrm{2}} {sin}\theta{d}\theta{d}\rho= \\ $$$$\mathrm{2}\left[−{cos}\theta\right]_{\mathrm{0}} ^{\pi} \left[\frac{\rho^{\mathrm{3}} }{\mathrm{3}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{4}}{\mathrm{3}} \\ $$

Commented by Ahmed1hamouda last updated on 28/Feb/21

∫_0 ^(2π) ∫_0 ^1 ρ^2 sinθ drdθ=0=

$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \int_{\mathrm{0}} ^{\mathrm{1}} \rho^{\mathrm{2}} {sin}\theta\:{drd}\theta=\mathrm{0}\cancel{=} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com