Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 133757 by liberty last updated on 24/Feb/21

Answered by bobhans last updated on 24/Feb/21

Let x be the least number of marbles  in the box , such that  { ((x≡5 (mod 7))),((x≡6 (mod 11))),((x≡ 8 (mod 13))) :}  We can use Chinese remainder theorem  a_1 =5 ; a_2 =6 ; a_3 =8  m_1 =7 ,m_2 =11 ,m_3 =13 ⇒ m=7×11×13=1001   determinant (((M_1 =(m/m_1 )=((1001)/7)=143)),((M_2 =(m/m_2 )=((1001)/(11))=91)),((M_3 =(m/m_3 )=((1001)/(13))=77)))  ⇒M_1 y_1 ≡1 (mod 7)⇒143y_1 ≡1 (mod 7)  y_1 ≡ 5 (mod 7)  M_2 y_2 ≡1 (mod 11)⇒91y_2 ≡1 (mod 11)  y_2 ≡4 (mod 11)  M_3 y_3 ≡1 (mod 13)⇒77y_3 ≡1 (mod 13)  y_3 ≡12 (mod 13)  Then x ≡ M_1 y_1 a_1 +M_2 y_2 a_2 +M_3 y_3 a_3  (mod 1001)  x≡ 143×5×5 + 91×4×6+ 77×12×8 (mod 1001)  x≡ 138 (mod 1001)

$${Let}\:{x}\:{be}\:{the}\:{least}\:{number}\:{of}\:{marbles} \\ $$$${in}\:{the}\:{box}\:,\:{such}\:{that}\:\begin{cases}{{x}\equiv\mathrm{5}\:\left({mod}\:\mathrm{7}\right)}\\{{x}\equiv\mathrm{6}\:\left({mod}\:\mathrm{11}\right)}\\{{x}\equiv\:\mathrm{8}\:\left({mod}\:\mathrm{13}\right)}\end{cases} \\ $$$${We}\:{can}\:{use}\:{Chinese}\:{remainder}\:{theorem} \\ $$$${a}_{\mathrm{1}} =\mathrm{5}\:;\:{a}_{\mathrm{2}} =\mathrm{6}\:;\:{a}_{\mathrm{3}} =\mathrm{8} \\ $$$${m}_{\mathrm{1}} =\mathrm{7}\:,{m}_{\mathrm{2}} =\mathrm{11}\:,{m}_{\mathrm{3}} =\mathrm{13}\:\Rightarrow\:{m}=\mathrm{7}×\mathrm{11}×\mathrm{13}=\mathrm{1001} \\ $$$$\begin{array}{|c|c|c|}{{M}_{\mathrm{1}} =\frac{{m}}{{m}_{\mathrm{1}} }=\frac{\mathrm{1001}}{\mathrm{7}}=\mathrm{143}}\\{{M}_{\mathrm{2}} =\frac{{m}}{{m}_{\mathrm{2}} }=\frac{\mathrm{1001}}{\mathrm{11}}=\mathrm{91}}\\{{M}_{\mathrm{3}} =\frac{{m}}{{m}_{\mathrm{3}} }=\frac{\mathrm{1001}}{\mathrm{13}}=\mathrm{77}}\\\hline\end{array} \\ $$$$\Rightarrow{M}_{\mathrm{1}} {y}_{\mathrm{1}} \equiv\mathrm{1}\:\left({mod}\:\mathrm{7}\right)\Rightarrow\mathrm{143}{y}_{\mathrm{1}} \equiv\mathrm{1}\:\left({mod}\:\mathrm{7}\right) \\ $$$${y}_{\mathrm{1}} \equiv\:\mathrm{5}\:\left({mod}\:\mathrm{7}\right) \\ $$$${M}_{\mathrm{2}} {y}_{\mathrm{2}} \equiv\mathrm{1}\:\left({mod}\:\mathrm{11}\right)\Rightarrow\mathrm{91}{y}_{\mathrm{2}} \equiv\mathrm{1}\:\left({mod}\:\mathrm{11}\right) \\ $$$${y}_{\mathrm{2}} \equiv\mathrm{4}\:\left({mod}\:\mathrm{11}\right) \\ $$$${M}_{\mathrm{3}} {y}_{\mathrm{3}} \equiv\mathrm{1}\:\left({mod}\:\mathrm{13}\right)\Rightarrow\mathrm{77}{y}_{\mathrm{3}} \equiv\mathrm{1}\:\left({mod}\:\mathrm{13}\right) \\ $$$${y}_{\mathrm{3}} \equiv\mathrm{12}\:\left({mod}\:\mathrm{13}\right) \\ $$$${Then}\:{x}\:\equiv\:{M}_{\mathrm{1}} {y}_{\mathrm{1}} {a}_{\mathrm{1}} +{M}_{\mathrm{2}} {y}_{\mathrm{2}} {a}_{\mathrm{2}} +{M}_{\mathrm{3}} {y}_{\mathrm{3}} {a}_{\mathrm{3}} \:\left({mod}\:\mathrm{1001}\right) \\ $$$${x}\equiv\:\mathrm{143}×\mathrm{5}×\mathrm{5}\:+\:\mathrm{91}×\mathrm{4}×\mathrm{6}+\:\mathrm{77}×\mathrm{12}×\mathrm{8}\:\left({mod}\:\mathrm{1001}\right) \\ $$$${x}\equiv\:\mathrm{138}\:\left({mod}\:\mathrm{1001}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com