Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 133530 by snipers237 last updated on 22/Feb/21

 I=∫_0 ^1   ((ln(−lnx))/(1+x^2 )) dx

$$\:{I}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{ln}\left(−{lnx}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:{dx}\: \\ $$

Commented by Dwaipayan Shikari last updated on 22/Feb/21

∫_0 ^∞ ((log(t))/(e^(2t) +1))e^t dt              −logx=t⇒1=−x(dt/dx)  =Σ_(n=1) ^∞ (−1)^(n+1) ∫_0 ^∞ e^(−2nt+t) log(t)dt  =Σ_(n=1) ^∞ (−1)^(n+1) (1/(2n−1))∫_0 ^∞ e^(−u) log(u)−((log(2n−1))/(2n−1)) ∫_0 ^∞ e^(−u) du  =−Σ_(n=0) ^∞ (((−1)^n γ)/(2n+1))−Σ_(n=0) ^∞ (−1)^n ((log(2n+1))/(2n+1))  =−((πγ)/4)+Φ′(1)  Φ(α)=Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^α ))⇒Φ(α)=−Σ_(n=0) ^∞ (((−1)^n log(2n+1))/((2n+1)^α ))

$$\int_{\mathrm{0}} ^{\infty} \frac{{log}\left({t}\right)}{{e}^{\mathrm{2}{t}} +\mathrm{1}}{e}^{{t}} {dt}\:\:\:\:\:\:\:\:\:\:\:\:\:\:−{logx}={t}\Rightarrow\mathrm{1}=−{x}\frac{{dt}}{{dx}} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \int_{\mathrm{0}} ^{\infty} {e}^{−\mathrm{2}{nt}+{t}} {log}\left({t}\right){dt} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}\int_{\mathrm{0}} ^{\infty} {e}^{−{u}} {log}\left({u}\right)−\frac{{log}\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{2}{n}−\mathrm{1}}\:\int_{\mathrm{0}} ^{\infty} {e}^{−{u}} {du} \\ $$$$=−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} \gamma}{\mathrm{2}{n}+\mathrm{1}}−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{log}\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{2}{n}+\mathrm{1}} \\ $$$$=−\frac{\pi\gamma}{\mathrm{4}}+\Phi'\left(\mathrm{1}\right) \\ $$$$\Phi\left(\alpha\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\alpha} }\Rightarrow\Phi\left(\alpha\right)=−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {log}\left(\mathrm{2}{n}+\mathrm{1}\right)}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\alpha} } \\ $$

Commented by snipers237 last updated on 23/Feb/21

thanks for crying sir , but i think  if x∈[0,1] then i can write (1/(1+x^2 ))=Σ_(n=0) ^∞ (−x^2 )^n    but when t∈[0,∞[ , we have e^t ∈[1,∞[ , so you can′t replace x by e^t  in the previous equality   you could thing about dividing by  e^(2t)    the numerator and the denominator in the way to get   ∫_0 ^∞ ((e^(−t) lnt)/(1+e^(−2t) ))dt    before replacing x by e^(−2t)

$${thanks}\:{for}\:{crying}\:{sir}\:,\:{but}\:{i}\:{think} \\ $$$${if}\:{x}\in\left[\mathrm{0},\mathrm{1}\right]\:{then}\:{i}\:{can}\:{write}\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−{x}^{\mathrm{2}} \right)^{{n}} \: \\ $$$${but}\:{when}\:{t}\in\left[\mathrm{0},\infty\left[\:,\:{we}\:{have}\:{e}^{{t}} \in\left[\mathrm{1},\infty\left[\:,\:{so}\:{you}\:{can}'{t}\:{replace}\:{x}\:{by}\:{e}^{{t}} \:{in}\:{the}\:{previous}\:{equality}\:\right.\right.\right.\right. \\ $$$${you}\:{could}\:{thing}\:{about}\:{dividing}\:{by}\:\:{e}^{\mathrm{2}{t}} \:\:\:{the}\:{numerator}\:{and}\:{the}\:{denominator}\:{in}\:{the}\:{way}\:{to}\:{get}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−{t}} {lnt}}{\mathrm{1}+{e}^{−\mathrm{2}{t}} }{dt}\:\:\:\:{before}\:{replacing}\:{x}\:{by}\:{e}^{−\mathrm{2}{t}} \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 23/Feb/21

((e^(−t) log(t))/(1+e^(−2t) ))=((e^(−t) .e^(2t) log(t))/(e^(2t) +e^(2t−2t) ))=((e^t log(t))/(1+e^(2t) ))

$$\frac{{e}^{−{t}} {log}\left({t}\right)}{\mathrm{1}+{e}^{−\mathrm{2}{t}} }=\frac{{e}^{−{t}} .{e}^{\mathrm{2}{t}} {log}\left({t}\right)}{{e}^{\mathrm{2}{t}} +{e}^{\mathrm{2}{t}−\mathrm{2}{t}} }=\frac{{e}^{{t}} {log}\left({t}\right)}{\mathrm{1}+{e}^{\mathrm{2}{t}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com