Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 132877 by mnjuly1970 last updated on 17/Feb/21

             .... nice  calculus...     prove that :    𝛗=∫_0 ^( ∞) ((sin(x).log^2 (x))/x)         =(π/(24))(12γ^( 2) +π^2 ) .....

$$\:\:\:\:\:\:\:\:\:\:\:\:\:....\:{nice}\:\:{calculus}... \\ $$$$\:\:\:{prove}\:{that}\:: \\ $$$$\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\right).{log}^{\mathrm{2}} \left({x}\right)}{{x}} \\ $$$$\:\:\:\:\:\:\:=\frac{\pi}{\mathrm{24}}\left(\mathrm{12}\gamma^{\:\mathrm{2}} +\pi^{\mathrm{2}} \right)\:..... \\ $$

Answered by Dwaipayan Shikari last updated on 17/Feb/21

φ(α)=∫_0 ^∞ ((sinx)/x^α )dx  φ(α)=(1/(Γ(α)))∫_0 ^∞ ∫_0 ^∞ t^(α−1) e^(−xt) sin(x)dtdx  =(1/(2iΓ(α)))∫_0 ^∞ ∫_0 ^∞ t^(α−1) e^(−(t−i)x) −t^(α−1) e^(−(t+i)x) dx  =(1/(2iΓ(α)))∫_0 ^∞ (t^(α−1) /(t−i))−(t^(α−1) /(t+i))dt  =(1/(Γ(α)))∫_0 ^∞ (t^(α−1) /(t^2 +1))dt=(1/(2Γ(α)))∫_0 ^∞ (u^((α/2)−1) /((u+1)^(1−(α/2)+(α/2)) ))du  =(1/(2Γ(α))).((Γ((α/2))Γ(1−(α/2)))/(Γ(1)))=(π/(2Γ(α)sin(((πα)/2))))  φ′′(α)∣_(α=1) =∫_0 ^∞ ((sin(x)log^2 (x))/x)dx=  (π/(24))(12γ^2 +π^2 )

$$\phi\left(\alpha\right)=\int_{\mathrm{0}} ^{\infty} \frac{{sinx}}{{x}^{\alpha} }{dx} \\ $$$$\phi\left(\alpha\right)=\frac{\mathrm{1}}{\Gamma\left(\alpha\right)}\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {t}^{\alpha−\mathrm{1}} {e}^{−{xt}} {sin}\left({x}\right){dtdx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}\Gamma\left(\alpha\right)}\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {t}^{\alpha−\mathrm{1}} {e}^{−\left({t}−{i}\right){x}} −{t}^{\alpha−\mathrm{1}} {e}^{−\left({t}+{i}\right){x}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}\Gamma\left(\alpha\right)}\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\alpha−\mathrm{1}} }{{t}−{i}}−\frac{{t}^{\alpha−\mathrm{1}} }{{t}+{i}}{dt} \\ $$$$=\frac{\mathrm{1}}{\Gamma\left(\alpha\right)}\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\alpha−\mathrm{1}} }{{t}^{\mathrm{2}} +\mathrm{1}}{dt}=\frac{\mathrm{1}}{\mathrm{2}\Gamma\left(\alpha\right)}\int_{\mathrm{0}} ^{\infty} \frac{{u}^{\frac{\alpha}{\mathrm{2}}−\mathrm{1}} }{\left({u}+\mathrm{1}\right)^{\mathrm{1}−\frac{\alpha}{\mathrm{2}}+\frac{\alpha}{\mathrm{2}}} }{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\Gamma\left(\alpha\right)}.\frac{\Gamma\left(\frac{\alpha}{\mathrm{2}}\right)\Gamma\left(\mathrm{1}−\frac{\alpha}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{1}\right)}=\frac{\pi}{\mathrm{2}\Gamma\left(\alpha\right){sin}\left(\frac{\pi\alpha}{\mathrm{2}}\right)} \\ $$$$\phi''\left(\alpha\right)\mid_{\alpha=\mathrm{1}} =\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({x}\right){log}^{\mathrm{2}} \left({x}\right)}{{x}}{dx}=\:\:\frac{\pi}{\mathrm{24}}\left(\mathrm{12}\gamma^{\mathrm{2}} +\pi^{\mathrm{2}} \right) \\ $$

Commented by Dwaipayan Shikari last updated on 17/Feb/21

φ′(α)=−((π^2 /(4Γ(α))).((cos((π/2)α))/(sin^2 ((π/2)α)))+(((π^2 /2)Γ(α).((cos((π/2)α))/(sin^2 ((π/2)α))))/(2Γ^2 (α)))+((πΓ′(α)cosec((π/2)2α))/(2Γ^2 (α))))  φ′(1)=((πγ)/2)

$$\phi'\left(\alpha\right)=−\left(\frac{\pi^{\mathrm{2}} }{\mathrm{4}\Gamma\left(\alpha\right)}.\frac{{cos}\left(\frac{\pi}{\mathrm{2}}\alpha\right)}{{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}}\alpha\right)}+\frac{\frac{\pi^{\mathrm{2}} }{\mathrm{2}}\Gamma\left(\alpha\right).\frac{{cos}\left(\frac{\pi}{\mathrm{2}}\alpha\right)}{{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}}\alpha\right)}}{\mathrm{2}\Gamma^{\mathrm{2}} \left(\alpha\right)}+\frac{\pi\Gamma'\left(\alpha\right){cosec}\left(\frac{\pi}{\mathrm{2}}\mathrm{2}\alpha\right)}{\mathrm{2}\Gamma^{\mathrm{2}} \left(\alpha\right)}\right) \\ $$$$\phi'\left(\mathrm{1}\right)=\frac{\pi\gamma}{\mathrm{2}} \\ $$

Commented by mnjuly1970 last updated on 17/Feb/21

with thanking sir payan...

$${with}\:{thanking}\:{sir}\:{payan}... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com