Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38516 by rahul 19 last updated on 26/Jun/18

∫_0 ^(π/2)  ∣sin x − cos x∣dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mid\mathrm{sin}\:{x}\:−\:\mathrm{cos}\:{x}\mid\mathrm{d}{x} \\ $$

Commented by math khazana by abdo last updated on 27/Jun/18

we have cosx −sinx=(√2)cos(x+(π/4)) ⇒  I =∫_0 ^(π/2) (√2)∣cos(x+(π/4))∣dx  changement  x+(π/4)=t give  I =(√2)∫_(π/4) ^((3π)/4)  ∣cost∣ dt  =(√2){ ∫_(π/4) ^(π/2)  cost dt + ∫_(π/2) ^((3π)/4)  −cost dt}  =(√2){  [sint]_(π/4) ^(π/2)   −[sint]_(π/2) ^((3π)/4)  }  =(√2) {  1−((√2)/2) −(((√2)/2) −1)}  =(√2){ 2−(√2)) = 2(√2) −2 =  I =2(√2) −2

$${we}\:{have}\:{cosx}\:−{sinx}=\sqrt{\mathrm{2}}{cos}\left({x}+\frac{\pi}{\mathrm{4}}\right)\:\Rightarrow \\ $$$${I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{2}}\mid{cos}\left({x}+\frac{\pi}{\mathrm{4}}\right)\mid{dx}\:\:{changement} \\ $$$${x}+\frac{\pi}{\mathrm{4}}={t}\:{give}\:\:{I}\:=\sqrt{\mathrm{2}}\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\mathrm{3}\pi}{\mathrm{4}}} \:\mid{cost}\mid\:{dt} \\ $$$$=\sqrt{\mathrm{2}}\left\{\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} \:{cost}\:{dt}\:+\:\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\mathrm{3}\pi}{\mathrm{4}}} \:−{cost}\:{dt}\right\} \\ $$$$=\sqrt{\mathrm{2}}\left\{\:\:\left[{sint}\right]_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} \:\:−\left[{sint}\right]_{\frac{\pi}{\mathrm{2}}} ^{\frac{\mathrm{3}\pi}{\mathrm{4}}} \:\right\} \\ $$$$=\sqrt{\mathrm{2}}\:\left\{\:\:\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:−\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:−\mathrm{1}\right)\right\} \\ $$$$=\sqrt{\mathrm{2}}\left\{\:\mathrm{2}−\sqrt{\mathrm{2}}\right)\:=\:\mathrm{2}\sqrt{\mathrm{2}}\:−\mathrm{2}\:= \\ $$$${I}\:=\mathrm{2}\sqrt{\mathrm{2}}\:−\mathrm{2} \\ $$

Answered by MJS last updated on 26/Jun/18

sin x −cos x=−(√2)cos(x+(π/4))  cos(x+(π/4))=0 ⇒ x=(π/4)  ∫_0 ^(π/2) ∣sin x −cos x∣dx=  =(√2)∫_0 ^(π/4) cos(x+(π/4))dx−(√2)∫_(π/4) ^(π/2) cos(x+(π/4))dx=  =2(√2)∫_0 ^(π/4) cos(x+(π/4))=2(√2)[sin(x+(π/4))]_0 ^(π/4) =  =2(√2)−2

$$\mathrm{sin}\:{x}\:−\mathrm{cos}\:{x}=−\sqrt{\mathrm{2}}\mathrm{cos}\left({x}+\frac{\pi}{\mathrm{4}}\right) \\ $$$$\mathrm{cos}\left({x}+\frac{\pi}{\mathrm{4}}\right)=\mathrm{0}\:\Rightarrow\:{x}=\frac{\pi}{\mathrm{4}} \\ $$$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mid\mathrm{sin}\:{x}\:−\mathrm{cos}\:{x}\mid{dx}= \\ $$$$=\sqrt{\mathrm{2}}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\mathrm{cos}\left({x}+\frac{\pi}{\mathrm{4}}\right){dx}−\sqrt{\mathrm{2}}\underset{\frac{\pi}{\mathrm{4}}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{cos}\left({x}+\frac{\pi}{\mathrm{4}}\right){dx}= \\ $$$$=\mathrm{2}\sqrt{\mathrm{2}}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\mathrm{cos}\left({x}+\frac{\pi}{\mathrm{4}}\right)=\mathrm{2}\sqrt{\mathrm{2}}\left[\mathrm{sin}\left({x}+\frac{\pi}{\mathrm{4}}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} = \\ $$$$=\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 27/Jun/18

Answered by tanmay.chaudhury50@gmail.com last updated on 27/Jun/18

∣sinx−cosx∣  −(sinx−cosx)    (Π/4)>x≥0   (sinx−cosx)     (Π/2)>x≥(Π/4)  see the graph from   value of cosx>sinx   when  (Π/4)>x≥0  value of sinx>cosx when  (Π/2)>x≥(Π/4)  ∫_0 ^(Π/2) ∣sinx−cosx∣dx  ∫_0 ^(Π/4) −(sinx−cosx)dx+∫_(Π/4) ^(Π/2)  (sinx−cosx)dx  ∣cosx+sinx∣_0 ^(Π/4) +∣(−cosx−sinx)∣_(Π/4) ^(Π/2)   ((1/(√2))+(1/(√2))−1−0)−{(0+1)−((1/(√2))+(1/(√2)))}  (2/(√2))−1−1+(2/(√2))  2(√2) −2

$$\mid{sinx}−{cosx}\mid \\ $$$$−\left({sinx}−{cosx}\right)\:\:\:\:\frac{\Pi}{\mathrm{4}}>{x}\geqslant\mathrm{0} \\ $$$$\:\left({sinx}−{cosx}\right)\:\:\:\:\:\frac{\Pi}{\mathrm{2}}>{x}\geqslant\frac{\Pi}{\mathrm{4}} \\ $$$${see}\:{the}\:{graph}\:{from}\: \\ $$$${value}\:{of}\:{cosx}>{sinx}\:\:\:{when}\:\:\frac{\Pi}{\mathrm{4}}>{x}\geqslant\mathrm{0} \\ $$$${value}\:{of}\:{sinx}>{cosx}\:{when}\:\:\frac{\Pi}{\mathrm{2}}>{x}\geqslant\frac{\Pi}{\mathrm{4}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{2}}} \mid{sinx}−{cosx}\mid{dx} \\ $$$$\int_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{4}}} −\left({sinx}−{cosx}\right){dx}+\int_{\frac{\Pi}{\mathrm{4}}} ^{\frac{\Pi}{\mathrm{2}}} \:\left({sinx}−{cosx}\right){dx} \\ $$$$\mid{cosx}+{sinx}\mid_{\mathrm{0}} ^{\frac{\Pi}{\mathrm{4}}} +\mid\left(−{cosx}−{sinx}\right)\mid_{\frac{\Pi}{\mathrm{4}}} ^{\frac{\Pi}{\mathrm{2}}} \\ $$$$\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}−\mathrm{1}−\mathrm{0}\right)−\left\{\left(\mathrm{0}+\mathrm{1}\right)−\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right)\right\} \\ $$$$\frac{\mathrm{2}}{\sqrt{\mathrm{2}}}−\mathrm{1}−\mathrm{1}+\frac{\mathrm{2}}{\sqrt{\mathrm{2}}} \\ $$$$\mathrm{2}\sqrt{\mathrm{2}}\:−\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com