Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 132762 by liberty last updated on 16/Feb/21

Answered by EDWIN88 last updated on 16/Feb/21

⇒x^2 +y^2 = 9 ⇒x^2 =9−y^2   Volume = (1/3)πx^2 (3+y)= (1/3)π(9−y^2 )(3+y)   F(y) = (π/3)(27+9y−3y^2 −y^3 )    ((dF(y))/dx) = (π/3)(9−6y−3y^2 )=0   y^2 +2y−3= 0 ⇒(y+3)(y−1)= 0   y= 1 ; ((d^2 F(y))/dy^2 ) ∣_(y=1)  = −6−6(1)< 0  so maximum value is F(1)= (π/3)(27+9−3−1)=((32π)/3)

$$\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\:\mathrm{9}\:\Rightarrow\mathrm{x}^{\mathrm{2}} =\mathrm{9}−\mathrm{y}^{\mathrm{2}} \\ $$$$\mathrm{Volume}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\pi\mathrm{x}^{\mathrm{2}} \left(\mathrm{3}+\mathrm{y}\right)=\:\frac{\mathrm{1}}{\mathrm{3}}\pi\left(\mathrm{9}−\mathrm{y}^{\mathrm{2}} \right)\left(\mathrm{3}+\mathrm{y}\right) \\ $$$$\:\mathrm{F}\left(\mathrm{y}\right)\:=\:\frac{\pi}{\mathrm{3}}\left(\mathrm{27}+\mathrm{9y}−\mathrm{3y}^{\mathrm{2}} −\mathrm{y}^{\mathrm{3}} \right)\: \\ $$$$\:\frac{\mathrm{dF}\left(\mathrm{y}\right)}{\mathrm{dx}}\:=\:\frac{\pi}{\mathrm{3}}\left(\mathrm{9}−\mathrm{6y}−\mathrm{3y}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\:\mathrm{y}^{\mathrm{2}} +\mathrm{2y}−\mathrm{3}=\:\mathrm{0}\:\Rightarrow\left(\mathrm{y}+\mathrm{3}\right)\left(\mathrm{y}−\mathrm{1}\right)=\:\mathrm{0} \\ $$$$\:\mathrm{y}=\:\mathrm{1}\:;\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{F}\left(\mathrm{y}\right)}{\mathrm{dy}^{\mathrm{2}} }\:\mid_{\mathrm{y}=\mathrm{1}} \:=\:−\mathrm{6}−\mathrm{6}\left(\mathrm{1}\right)<\:\mathrm{0} \\ $$$$\mathrm{so}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{is}\:\mathrm{F}\left(\mathrm{1}\right)=\:\frac{\pi}{\mathrm{3}}\left(\mathrm{27}+\mathrm{9}−\mathrm{3}−\mathrm{1}\right)=\frac{\mathrm{32}\pi}{\mathrm{3}}\: \\ $$$$ \\ $$

Answered by Olaf last updated on 16/Feb/21

x^2 +y^2  = 9  h = 3+y = 3+(√(9−x^2 ))  V(x) = (1/3)πx^2 h = (π/3)x^2 (3+(√(9−x^2 )))  V′(x) = (π/3)[2x(3+(√(9−x^2 )))+x^2 (((−2x)/(2(√(9−x^2 )))))]  V′(x) = ((πx)/3)[2(3+(√(9−x^2 )))−(x^2 /( (√(9−x^2 ))))]  V′(x) = 0  ⇔ 6(√(9−x^2 ))+2(9−x^2 )−x^2  = 0  ⇔ 2(√(9−x^2 )) = x^2 −6  ⇔ 4(9−x^2 ) = (x^2 −6)^2   ⇔ x^4 −12x^2 +36+4x^2 −36 = 0  ⇔ x^2 (x^2 −8) = 0  maximum for x = 2(√2)  V_(max)  = V(2(√2)) = (π/3).8.(3+(√(9−8)))  V_(max)  = ((32π)/3)

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:=\:\mathrm{9} \\ $$$${h}\:=\:\mathrm{3}+{y}\:=\:\mathrm{3}+\sqrt{\mathrm{9}−{x}^{\mathrm{2}} } \\ $$$$\mathrm{V}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{3}}\pi{x}^{\mathrm{2}} {h}\:=\:\frac{\pi}{\mathrm{3}}{x}^{\mathrm{2}} \left(\mathrm{3}+\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }\right) \\ $$$$\mathrm{V}'\left({x}\right)\:=\:\frac{\pi}{\mathrm{3}}\left[\mathrm{2}{x}\left(\mathrm{3}+\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }\right)+{x}^{\mathrm{2}} \left(\frac{−\mathrm{2}{x}}{\mathrm{2}\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }}\right)\right] \\ $$$$\mathrm{V}'\left({x}\right)\:=\:\frac{\pi{x}}{\mathrm{3}}\left[\mathrm{2}\left(\mathrm{3}+\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }\right)−\frac{{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }}\right] \\ $$$$\mathrm{V}'\left({x}\right)\:=\:\mathrm{0} \\ $$$$\Leftrightarrow\:\mathrm{6}\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }+\mathrm{2}\left(\mathrm{9}−{x}^{\mathrm{2}} \right)−{x}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\Leftrightarrow\:\mathrm{2}\sqrt{\mathrm{9}−{x}^{\mathrm{2}} }\:=\:{x}^{\mathrm{2}} −\mathrm{6} \\ $$$$\Leftrightarrow\:\mathrm{4}\left(\mathrm{9}−{x}^{\mathrm{2}} \right)\:=\:\left({x}^{\mathrm{2}} −\mathrm{6}\right)^{\mathrm{2}} \\ $$$$\Leftrightarrow\:{x}^{\mathrm{4}} −\mathrm{12}{x}^{\mathrm{2}} +\mathrm{36}+\mathrm{4}{x}^{\mathrm{2}} −\mathrm{36}\:=\:\mathrm{0} \\ $$$$\Leftrightarrow\:{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{8}\right)\:=\:\mathrm{0} \\ $$$${maximum}\:{for}\:{x}\:=\:\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\mathrm{V}_{{max}} \:=\:\mathrm{V}\left(\mathrm{2}\sqrt{\mathrm{2}}\right)\:=\:\frac{\pi}{\mathrm{3}}.\mathrm{8}.\left(\mathrm{3}+\sqrt{\mathrm{9}−\mathrm{8}}\right) \\ $$$$\mathrm{V}_{{max}} \:=\:\frac{\mathrm{32}\pi}{\mathrm{3}} \\ $$

Commented by otchereabdullai@gmail.com last updated on 14/Mar/21

nice!

$$\mathrm{nice}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com