Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 132741 by mnjuly1970 last updated on 16/Feb/21

             ...nice    calculus...    ∫_(0^(    )   ) ^( 1) (dx/((x−2)(x^2 (1−x)^3 )^(1/5) )) =?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:\:\:{calculus}... \\ $$$$\:\:\int_{\mathrm{0}^{\:\:\:\:} \:\:} ^{\:\mathrm{1}} \frac{{dx}}{\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)^{\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{5}}} }\:=? \\ $$

Commented by MJS_new last updated on 16/Feb/21

I get −2^(1/10) π(√(1−((√5)/5)))≈−2.50340750  using the substitution t=(((2(1−x))/x))^(1/5)

$$\mathrm{I}\:\mathrm{get}\:−\mathrm{2}^{\mathrm{1}/\mathrm{10}} \pi\sqrt{\mathrm{1}−\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}}\approx−\mathrm{2}.\mathrm{50340750} \\ $$$$\mathrm{using}\:\mathrm{the}\:\mathrm{substitution}\:{t}=\left(\frac{\mathrm{2}\left(\mathrm{1}−{x}\right)}{{x}}\right)^{\mathrm{1}/\mathrm{5}} \\ $$

Commented by MJS_new last updated on 16/Feb/21

yes of course. forgot the “−”

$$\mathrm{yes}\:\mathrm{of}\:\mathrm{course}.\:\mathrm{forgot}\:\mathrm{the}\:``−'' \\ $$

Commented by Dwaipayan Shikari last updated on 16/Feb/21

Yes sir!But i think the result should be −ve

$${Yes}\:{sir}!{But}\:{i}\:{think}\:{the}\:{result}\:{should}\:{be}\:−{ve} \\ $$

Commented by mnjuly1970 last updated on 16/Feb/21

bravo  mr Mj  thank you so much...

$${bravo}\:\:{mr}\:{Mj} \\ $$$${thank}\:{you}\:{so}\:{much}... \\ $$

Answered by Dwaipayan Shikari last updated on 16/Feb/21

−∫_0 ^1 t^(−(3/5)) (1−t)^(−(2/5)) (1+t)^(−1) dt      1−x=t   _2 F_1 (a,b;c;z)=((Γ(c))/(Γ(c−b)Γ(b)))∫_0 ^1 x^(b−1) (1−x)^(c−b−1) (1−zx)^(−a) dx  b−1=−(3/5)⇒b=(2/5)  c−b−1=((−2)/5)⇒c=1  a=1   z=−1  −Γ((3/5))Γ((2/5)) _2 F_1 (1,(2/5),1,−1)=−∫_0 ^1 t^(−(3/5)) (1−t)^(−(2/5)) (1+t)^(−1) dt  =−((2(√2)π)/( (√(5−(√5))))) _2 F_1 (1,(2/5),1;−1)

$$−\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{−\frac{\mathrm{3}}{\mathrm{5}}} \left(\mathrm{1}−{t}\right)^{−\frac{\mathrm{2}}{\mathrm{5}}} \left(\mathrm{1}+{t}\right)^{−\mathrm{1}} {dt}\:\:\:\:\:\:\mathrm{1}−{x}={t} \\ $$$$\:_{\mathrm{2}} {F}_{\mathrm{1}} \left({a},{b};{c};{z}\right)=\frac{\Gamma\left({c}\right)}{\Gamma\left({c}−{b}\right)\Gamma\left({b}\right)}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{b}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{c}−{b}−\mathrm{1}} \left(\mathrm{1}−{zx}\right)^{−{a}} {dx} \\ $$$${b}−\mathrm{1}=−\frac{\mathrm{3}}{\mathrm{5}}\Rightarrow{b}=\frac{\mathrm{2}}{\mathrm{5}} \\ $$$${c}−{b}−\mathrm{1}=\frac{−\mathrm{2}}{\mathrm{5}}\Rightarrow{c}=\mathrm{1} \\ $$$${a}=\mathrm{1}\:\:\:{z}=−\mathrm{1} \\ $$$$−\Gamma\left(\frac{\mathrm{3}}{\mathrm{5}}\right)\Gamma\left(\frac{\mathrm{2}}{\mathrm{5}}\right)\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\mathrm{1},\frac{\mathrm{2}}{\mathrm{5}},\mathrm{1},−\mathrm{1}\right)=−\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{−\frac{\mathrm{3}}{\mathrm{5}}} \left(\mathrm{1}−{t}\right)^{−\frac{\mathrm{2}}{\mathrm{5}}} \left(\mathrm{1}+{t}\right)^{−\mathrm{1}} {dt} \\ $$$$=−\frac{\mathrm{2}\sqrt{\mathrm{2}}\pi}{\:\sqrt{\mathrm{5}−\sqrt{\mathrm{5}}}}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(\mathrm{1},\frac{\mathrm{2}}{\mathrm{5}},\mathrm{1};−\mathrm{1}\right) \\ $$

Commented by mnjuly1970 last updated on 16/Feb/21

mercey   grateful...   hypergeometrey function...

$${mercey}\: \\ $$$${grateful}... \\ $$$$\:{hypergeometrey}\:{function}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com