Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 132407 by bramlexs22 last updated on 14/Feb/21

on circle x^2  + y^2  = 25 , find the point  closest to (1,1).

$$\mathrm{on}\:\mathrm{circle}\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{25}\:,\:\mathrm{find}\:\mathrm{the}\:\mathrm{point} \\ $$$$\mathrm{closest}\:\mathrm{to}\:\left(\mathrm{1},\mathrm{1}\right). \\ $$

Answered by EDWIN88 last updated on 14/Feb/21

let P(x,y) be a point on a circle   let x be a distance of plint (1,1) to (x,y)  d^2 = (x−1)^2 +(y−1)^2   d^2 =(x−1)^2 +25−x^2 −2(√(25−x^2 )) +1  d^2 =x^2 −2x+1+25−x^2 −2(√(25−x^2 )) +1  d^2 = 27−2x−2(√(25−x^2 ))   differentiating w.r.t x  (d^2 )′= −2−2(((−x)/( (√(25−x^2 )))) )=0   (x/( (√(25−x^2 )))) = 1⇔2x^2 =25 ⇒x=±(5/( (√2)))  and y = ± (√(25−((25)/2))) = ±(5/( (√2))) the point  on circle such that closest to (1,1) is ((5/( (√2))) , (5/( (√2))) )

$$\mathrm{let}\:\mathrm{P}\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{a}\:\mathrm{circle}\: \\ $$$$\mathrm{let}\:\mathrm{x}\:\mathrm{be}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{plint}\:\left(\mathrm{1},\mathrm{1}\right)\:\mathrm{to}\:\left(\mathrm{x},\mathrm{y}\right) \\ $$$$\mathrm{d}^{\mathrm{2}} =\:\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{d}^{\mathrm{2}} =\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{25}−\mathrm{x}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{25}−\mathrm{x}^{\mathrm{2}} }\:+\mathrm{1} \\ $$$$\mathrm{d}^{\mathrm{2}} =\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{1}+\mathrm{25}−\mathrm{x}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{25}−\mathrm{x}^{\mathrm{2}} }\:+\mathrm{1} \\ $$$$\mathrm{d}^{\mathrm{2}} =\:\mathrm{27}−\mathrm{2x}−\mathrm{2}\sqrt{\mathrm{25}−\mathrm{x}^{\mathrm{2}} }\: \\ $$$$\mathrm{differentiating}\:\mathrm{w}.\mathrm{r}.\mathrm{t}\:\mathrm{x} \\ $$$$\left(\mathrm{d}^{\mathrm{2}} \right)'=\:−\mathrm{2}−\mathrm{2}\left(\frac{−\mathrm{x}}{\:\sqrt{\mathrm{25}−\mathrm{x}^{\mathrm{2}} }}\:\right)=\mathrm{0} \\ $$$$\:\frac{\mathrm{x}}{\:\sqrt{\mathrm{25}−\mathrm{x}^{\mathrm{2}} }}\:=\:\mathrm{1}\Leftrightarrow\mathrm{2x}^{\mathrm{2}} =\mathrm{25}\:\Rightarrow\mathrm{x}=\pm\frac{\mathrm{5}}{\:\sqrt{\mathrm{2}}} \\ $$$$\mathrm{and}\:\mathrm{y}\:=\:\pm\:\sqrt{\mathrm{25}−\frac{\mathrm{25}}{\mathrm{2}}}\:=\:\pm\frac{\mathrm{5}}{\:\sqrt{\mathrm{2}}}\:\mathrm{the}\:\mathrm{point} \\ $$$$\mathrm{on}\:\mathrm{circle}\:\mathrm{such}\:\mathrm{that}\:\mathrm{closest}\:\mathrm{to}\:\left(\mathrm{1},\mathrm{1}\right)\:\mathrm{is}\:\left(\frac{\mathrm{5}}{\:\sqrt{\mathrm{2}}}\:,\:\frac{\mathrm{5}}{\:\sqrt{\mathrm{2}}}\:\right) \\ $$

Commented by EDWIN88 last updated on 14/Feb/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com