| 
 | ||
| Question Number 132240 by bemath last updated on 12/Feb/21 | ||
|  | ||
| $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\left(\mathrm{2x}+\frac{\pi}{\mathrm{4}}\right)−\mathrm{2tan}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)+\mathrm{tan}\:\frac{\pi}{\mathrm{4}}}{\mathrm{sin}\:\left(\mathrm{2x}+\frac{\pi}{\mathrm{4}}\right)−\mathrm{2sin}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)+\mathrm{sin}\:\frac{\pi}{\mathrm{4}}}\:? \\ $$$$ \\ $$ | ||
| Answered by EDWIN88 last updated on 13/Feb/21 | ||
| ![lim_(x→0)  ((2sec^2 (2x+(π/4))−2sec^2 (x+(π/4)))/(2cos (2x+(π/4))−2cos (x+(π/4))))  = lim_(x→0) ((cos^2 (x+(π/4))−cos^2 (2x+(π/4)))/([ cos (2x+(π/4)).cos (x+(π/4))]^2 [cos (2x+(π/4))−cos (x+(π/4))]))  = lim_(x→0)  ((−[ cos (x+(π/4))+cos (2x+(π/4)) ])/([ cos (2x+(π/4)).cos (x+(π/4))]^2 ))  = −((√2)/(((1/2))^2 )) = −4(√2)](Q132284.png) | ||
| $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2sec}\:^{\mathrm{2}} \left(\mathrm{2x}+\frac{\pi}{\mathrm{4}}\right)−\mathrm{2sec}\:^{\mathrm{2}} \left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)}{\mathrm{2cos}\:\left(\mathrm{2x}+\frac{\pi}{\mathrm{4}}\right)−\mathrm{2cos}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)−\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{2x}+\frac{\pi}{\mathrm{4}}\right)}{\left[\:\mathrm{cos}\:\left(\mathrm{2x}+\frac{\pi}{\mathrm{4}}\right).\mathrm{cos}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)\right]^{\mathrm{2}} \left[\mathrm{cos}\:\left(\mathrm{2x}+\frac{\pi}{\mathrm{4}}\right)−\mathrm{cos}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)\right]} \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\left[\:\mathrm{cos}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)+\mathrm{cos}\:\left(\mathrm{2x}+\frac{\pi}{\mathrm{4}}\right)\:\right]}{\left[\:\mathrm{cos}\:\left(\mathrm{2x}+\frac{\pi}{\mathrm{4}}\right).\mathrm{cos}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)\right]^{\mathrm{2}} } \\ $$$$=\:−\frac{\sqrt{\mathrm{2}}}{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }\:=\:−\mathrm{4}\sqrt{\mathrm{2}} \\ $$ | ||